タグ「平面」の検索結果

61ページ目:全1904問中601問~610問を表示)
埼玉大学 国立 埼玉大学 2014年 第2問
$xy$平面の格子点上に駒「銀」が$1$枚ある.ただし,格子点とは$x$座標と$y$座標がともに整数となる点である.$1$回の操作で,次の$(\mathrm{a})$,$(\mathrm{b})$,$(\mathrm{c})$,$(\mathrm{d})$,$(\mathrm{e})$のいずれか$1$つを等しい確率で選び,駒「銀」を移動させるものとする(下図参照).

$(\mathrm{a})$ $(x,\ y)$から$(x,\ y+1)$に移動させる.
$(\mathrm{b})$ $(x,\ y)$から$(x+1,\ y+1)$に移動させる.
$(\mathrm{c})$ $(x,\ y)$から$(x-1,\ y+1)$に移動させる.
$(\mathrm{d})$ $(x,\ y)$から$(x-1,\ y-1)$に移動させる.
$(\mathrm{e})$ $(x,\ y)$から$(x+1,\ y-1)$に移動させる.

最初に駒「銀」は原点$(0,\ 0)$にあるものとし,以下の問いに答えよ.

(1)$3$回の操作の後,駒が$(1,\ 1)$にある確率を求めよ.
(2)$n$回の操作の後,駒がある点の$y$座標は$n-1$とならないことを示せ.
(3)$n$回の操作の後,駒が$(n-1,\ 0)$にある確率を求めよ.
(図は省略)
埼玉大学 国立 埼玉大学 2014年 第4問
実数$a,\ b$は$a>b>0$および$a^2-b^2=2ab$を満たすとする.$xy$平面上で$(a \cos \theta,\ b \sin \theta)$ $(0 \leqq \theta \leqq 2\pi)$によって媒介変数表示された楕円を$C$とする.点$\displaystyle \mathrm{P}(b \cos t,\ a \sin t) \left( 0<t<\frac{\pi}{2} \right)$と$C$上の動点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$に対し,$f(\theta)=|\overrightarrow{\mathrm{PQ}}|^2$とおく.

(1)$f^\prime(\theta)=0$であるとき,$\sin 2\theta=\sin (\theta-t)$が成り立つことを示せ.
(2)$f^\prime(\theta)=0$となる$\theta$を$t$を用いて表せ.
(3)$f^\prime(\theta)=0$となる$\theta$がちょうど$3$つとなる$t$の値を求めよ.
(4)$t$を$(3)$で求めた値とする.このとき,$f^\prime(\theta)=0$となる各$\theta$に対応する$C$上の$3$点を頂点とする三角形の面積を$a,\ b$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を$a>2$である実数とする.$xy$平面上の曲線$\displaystyle C:y=\frac{1}{\sin x \cos x} (0<x<\frac{\pi}{2})$と直線$y=a$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.以下の問いに答えよ.

(1)$\tan \alpha$および$\tan \beta$を$a$を用いて表せ.
(2)$C$と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた領域を$S$とする.$S$の面積を$a$を用いて表せ.
(3)$S$を$x$軸の周りに回転して得られる立体の体積$V$を$a$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を正の実数とする.$xy$平面上の曲線$C:y=e^{ax}$の接線で,原点を通るものを$\ell$とし,$C$と$\ell$および$y$軸で囲まれた領域を$S$とする.以下の問いに答えよ.

(1)$S$を$x$軸の周りに回転して得られる立体の体積$V_1$を求めよ.
(2)$S$を$y$軸の周りに回転して得られる立体の体積$V_2$を求めよ.
(3)$V_1=V_2$となるときの$a$の値を求めよ.
新潟大学 国立 新潟大学 2014年 第4問
座標平面上の曲線$y=|x^2+2x|$を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$と直線$y=x+2$の共有点の座標を求めよ.
(2)曲線$C$と直線$y=x+2$で囲まれた部分の面積を求めよ.
(3)曲線$C$と直線$y=x+a$がちょうど$2$つの共有点をもつような実数$a$の値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第1問
平面上のベクトル
\[ \overrightarrow{a_n}=\left( \cos \frac{n\pi}{4},\ \sin \frac{n\pi}{4} \right), \overrightarrow{b_n}=\left( 2 \cos \frac{n\pi}{6},\ 2 \sin \frac{n\pi}{6} \right) \quad (n=0,\ 1,\ 2,\ \cdots,\ 12) \]
に対して,$\displaystyle \sum_{n=0}^{12} |\overrightarrow{a_n}+\overrightarrow{b_n}|^2$を求めよ.
信州大学 国立 信州大学 2014年 第2問
実数$a,\ b$は,$-1<x<1$に対して$-3<x^2-2ax+b<5$を満たすものとする.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)点$(a,\ b)$が表す領域を図示せよ.
(2)座標平面上で,直線$x=0$,直線$x=1$,直線$y=-3$,曲線$y=x^2-2ax+b$で囲まれる図形の面積$S$を$a,\ b$を用いて表せ.
(3)$(2)$の$S$の取りうる値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第4問
座標平面において,$C:y=e^{-x} (x>0)$上の点$(a,\ e^{-a})$の接線を$L$とおき,$L$と$x$軸との交点を$\mathrm{A}$,$L$と$y$軸との交点を$\mathrm{B}$,原点を$\mathrm{O}$とする.三角形$\mathrm{OAB}$の面積を$S_1$とし,$y$軸,$L$,$C$で囲まれる図形の面積を$S_2$とおく.

(1)$S_1,\ S_2$をそれぞれ求めよ.
(2)$a>0$のとき,$(a-1)e^a+1>0$であることを示せ.
(3)$\displaystyle \frac{S_2}{S_1}$を$a$の関数とみたとき,区間$(0,\ \infty)$で単調に増加することを示せ.
信州大学 国立 信州大学 2014年 第1問
平面上のベクトル
\[ \overrightarrow{a_n}=\left( \cos \frac{n\pi}{4},\ \sin \frac{n\pi}{4} \right), \overrightarrow{b_n}=\left( 2 \cos \frac{n\pi}{6},\ 2 \sin \frac{n\pi}{6} \right) \quad (n=0,\ 1,\ 2,\ \cdots,\ 12) \]
に対して,$\displaystyle \sum_{n=0}^{12} |\overrightarrow{a_n}+\overrightarrow{b_n}|^2$を求めよ.
信州大学 国立 信州大学 2014年 第2問
実数$a,\ b$は,$-1<x<1$に対して$-3<x^2-2ax+b<5$を満たすものとする.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)点$(a,\ b)$が表す領域を図示せよ.
(2)座標平面上で,直線$x=0$,直線$x=1$,直線$y=-3$,曲線$y=x^2-2ax+b$で囲まれる図形の面積$S$を$a,\ b$を用いて表せ.
(3)$(2)$の$S$の取りうる値の範囲を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。