タグ「平面」の検索結果

56ページ目:全1904問中551問~560問を表示)
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
札幌医科大学 公立 札幌医科大学 2015年 第4問
次の問いに答えよ.

(1)次の不定積分を求めよ.

\mon[$①$] $\displaystyle \int t \sin t \, dt$
\mon[$②$] $\displaystyle \int t^2 \cos t \, dt$

座標平面の原点を$\mathrm{O}$とする.点$\mathrm{A}(0,\ 1)$を中心とし半径$1$の円$C$上の$x \geqq 0$の範囲にある点$\mathrm{P}(x_p,\ y_p)$に対して,線分$\mathrm{OP}$と$x$軸の正の部分とのなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とする.また,$\mathrm{P}$における$C$の接線上に点$\mathrm{Q}(x_q,\ y_q)$を次の条件をみたすようにとる.
\begin{itemize}
$y_q \leqq y_p$
線分$\mathrm{PQ}$の長さは,$C$上の弧$\mathrm{OP}$(ただし弧全体が$x \geqq 0$に存在する方)の長さに等しい
$\mathrm{P}$の座標が$(0,\ 2)$のときは$x_q=\pi$となるように$\mathrm{Q}$をとる
$\mathrm{P}$が$\mathrm{O}$と一致する場合は$\mathrm{Q}$も$\mathrm{O}$とし,$\theta=0$とする
\end{itemize}
(2)$\mathrm{P}$の座標を$\theta$を用いて表せ.
(3)$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(4)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$y_q$の最大値と最小値を求めよ.
(5)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{Q}$の描く曲線と$y$軸および直線$y=2$で囲まれる部分の面積を求めよ.
京都府立大学 公立 京都府立大学 2015年 第4問
$k>0$とする.関数$f(x)=x^3-10x^2+kx$がある.$xy$平面上の曲線$y=f(x)$が$x$軸と接するとき,以下の問いに答えよ.

(1)$k$の値を求めよ.
(2)$y=f(x)$と$x$軸によって囲まれた部分の面積を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第2問
次の問いに答えよ.

(1)$a$は実数で$0 \leqq a \leqq \pi$とする.
\[ 0 \leqq \theta \leqq \pi,\quad \sin \left( \frac{\pi}{4}a^2+\frac{\pi}{4} \right)+\cos \theta=0 \]
を満たす$\theta$を求めよ.
(2)連立不等式
\[ 0 \leqq x \leqq \pi,\quad 0 \leqq y \leqq \pi,\quad \sin \left( \frac{\pi}{4}x^2+\frac{\pi}{4} \right)+\cos y \geqq 0 \]
によって表される$xy$平面上の領域を図示せよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第3問
実数$a,\ b$を定数とし,関数$f(x)=(1-2a)x^2+2(a+b-1)x+1-b$を考える.次の問に答えなさい.

(1)すべての実数$x$に対して$f(x) \geqq 0$が成り立つような実数の組$(a,\ b)$の範囲を求め,座標平面上に図示しなさい.
(2)$0 \leqq x \leqq 1$を満たす,すべての実数$x$に対して$f(x) \geqq 0$が成り立つような実数の組$(a,\ b)$の範囲を求め,座標平面上に図示しなさい.
大阪府立大学 公立 大阪府立大学 2015年 第4問
$a,\ b,\ p,\ q$を実数の定数(ただし$a<b$)とする.$2$次方程式
\[ (*) \quad x^2-px+q=0 \]
について以下の問いに答えよ.

(1)$(*)$が実数解をもち,それらがともに$a$以上$b$以下であるための必要十分条件を$p,\ q$についての連立不等式で表せ.
(2)$(1)$で導いた$p,\ q$についての連立不等式を満たす座標平面上の点$(p,\ q)$全体の集合を$D$とするとき,$a,\ b$を用いて$D$の面積を表せ.
大阪府立大学 公立 大阪府立大学 2015年 第3問
四面体$\mathrm{OABC}$が与えられており,各辺の長さが
\[ \mathrm{OA}=2,\quad \mathrm{OB}=3,\quad \mathrm{OC}=3,\quad \mathrm{AB}=3,\quad \mathrm{BC}=2,\quad \mathrm{CA}=3 \]
であるとする.また,点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る平面を$\alpha$,点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面を$\beta$とし,点$\mathrm{B}$を通り平面$\alpha$に垂直な直線を$g$,点$\mathrm{C}$を通り平面$\beta$に垂直な直線を$h$とする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)直線$g$と平面$\alpha$の交点を$\mathrm{P}$,直線$h$と平面$\beta$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて,$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を表せ.
(3)直線$g$と直線$h$は交わることを示せ.また,直線$g$と直線$h$の交点を$\mathrm{R}$とするとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて,$\overrightarrow{\mathrm{OR}}$を表せ.
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
福岡女子大学 公立 福岡女子大学 2015年 第3問
関数
\[ f(x)=\frac{2}{x-1}-\frac{1}{x-2} \quad (x \neq 1,\ x \neq 2) \]
について,以下の問に答えなさい.

(1)$2$つの関数$\displaystyle y=\frac{2}{x-1} (x \neq 1)$と$\displaystyle y=-\frac{1}{x-2} (x \neq 2)$のグラフの概形を同じ座標平面上に描きなさい.
(2)$f(x)$の増減表を作成し,$f(x)$の極小値が$3+2 \sqrt{2}$,極大値が$3-2 \sqrt{2}$となることを示しなさい.
(3)関数$y=f(x)$のグラフの概形を座標平面上に描きなさい.
北九州市立大学 公立 北九州市立大学 2015年 第3問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$1$の円$C$と点$\mathrm{A}(-1,\ 0)$を考える.また,円$C$上で点$\mathrm{A}$と異なる点を$\mathrm{P}(\cos 2\theta,\ \sin 2\theta)$とおく.ただし,$\theta$は$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$を満たす.線分$\mathrm{AP}$の中点を$\mathrm{M}$とし,線分$\mathrm{AP}$の垂直$2$等分線と円$C$の交点を各々$\mathrm{Q}$,$\mathrm{R}$とする.ただし,$2$点$\mathrm{Q}$,$\mathrm{R}$は,円$C$上に反時計回りに$\mathrm{ARPQ}$の順に並ぶようにとる.以下の問題に答えよ.

(1)中点$\mathrm{M}$の座標を$\theta$を用いて表せ.
(2)$2$点$\mathrm{Q},\ \mathrm{R}$の座標を$\theta$を用いて表せ.
(3)線分$\mathrm{QR}$の長さを求めよ.また,線分$\mathrm{AP}$の長さを$\theta$を用いて表せ.
(4)四角形$\mathrm{ARPQ}$の面積を$S$とおく.面積$S$を$\theta$を用いて表せ.また,面積$S$が最大となるとき,$\theta$の値と面積$S$を求めよ.
(5)$\triangle \mathrm{APQ}$と$\triangle \mathrm{ARP}$の面積を$\theta$を用いて表せ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。