タグ「平面」の検索結果

55ページ目:全1904問中541問~550問を表示)
愛知県立大学 公立 愛知県立大学 2015年 第3問
座標空間において,$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 1,\ 0)$,$\mathrm{B}(2,\ 1,\ 1)$の定める平面を$\alpha$とし,$3$点$(0,\ 0,\ 0)$,$(0,\ 1,\ 1)$,$(1,\ 0,\ 1)$の定める平面を$\beta$とする.また,平面$\alpha$と平面$\beta$が交わってできる直線を$\ell$とし,平面$\alpha$上の点$\mathrm{P}$の座標を$(2,\ -1,\ 3)$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)直線$\ell$上の点を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と実数$k$を用いて表せ.
(3)点$\mathrm{P}$から直線$\ell$に垂線を下ろす.このとき,直線$\ell$と垂線との交点の座標を求めよ.
京都府立大学 公立 京都府立大学 2015年 第4問
$a>0$,$\displaystyle b>\frac{1}{2}$とする.$xy$平面上に,

曲線$C_1$:$y=\log x (x>0)$,曲線$C_2$:$y=ax^2-b (x>0)$

がある.$C_1$と$C_2$は点$\mathrm{P}$で接している.$\mathrm{P}$の$x$座標を$b$の関数と考えて$x(b)$とする.$C_1$と$C_2$と$x$軸で囲まれた部分の面積を$b$の関数と考えて$S(b)$とする.以下の問いに答えよ.

(1)$x(b)$を$b$を用いて表せ.
(2)$\displaystyle S \left( \frac{3}{2} \right)$の値を求めよ.
(3)$\displaystyle \lim_{b \to \infty} S(b)=1$となることを示せ.
釧路公立大学 公立 釧路公立大学 2015年 第3問
$xy$平面上に円$C:x^2+y^2+8x-6y+16=0$と直線$\ell:-3x-4y+12=0$がある.このとき,以下の各問に答えよ.

(1)円$C$の中心の座標と半径を求めよ.
(2)円$D$は直線$\ell$に接し,円$C$と外接している.また,その中心の$y$座標が円$C$の中心の$y$座標に等しい.円$D$の中心の座標と半径を求めよ.
京都府立大学 公立 京都府立大学 2015年 第2問
$r>0$とする.実数の数列$\{a_n\}$は,

$a_1=0,\quad a_2=1,$
${a_{n+2}}^2-2a_{n+2}a_{n+1}+(1-r){a_{n+1}}^2+2ra_{n+1}a_n-r{a_n}^2=0 \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たすとする.数列$\{b_n\}$を,

$b_n=a_{n+1}-a_n \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.$b_n>0 (n=1,\ 2,\ 3,\ \cdots)$とする.$\mathrm{O}$を原点とする$xy$平面上の点

$\mathrm{P}_n(n,\ a_n) \quad (n=1,\ 2,\ 3,\ \cdots)$

を考える.このとき,以下の問いに答えよ.

(1)$\displaystyle \frac{b_{n+1}}{b_n}$を$r$を用いて表せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$の成分表示を$n,\ r$を用いて与えよ.
(4)$\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$と$\overrightarrow{\mathrm{P}_{n+1} \mathrm{P}_{n+2}}$のなす角は$\displaystyle \frac{\pi}{2}$とはならないことを示せ.
宮城大学 公立 宮城大学 2015年 第1問
次の問いに答えなさい.

(1)平面上で,互いに平行な$5$本の直線とこれらに直交する$6$本の直線について,互いに隣り合う平行線どうしの間の距離がすべて等しく,その距離を$d (d>0)$とするとき,これらの平行線を使ってできるすべての長方形の個数を求めなさい.また,これら長方形のうち,正方形でない長方形の個数を求めなさい.
(2)$\log_{10}2<0.31$が成り立つことを示しなさい.
岐阜薬科大学 公立 岐阜薬科大学 2015年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
$2$つずつ平行な$3$組の平面で囲まれた立体を平行六面体という.平行六面体$\mathrm{ABCD}$-$\mathrm{EFGH}$があり,
\[ l \overrightarrow{\mathrm{PB}}+m \overrightarrow{\mathrm{PD}}+n \overrightarrow{\mathrm{PE}}=\overrightarrow{\mathrm{GP}} \]
を満たす点$\mathrm{P}$が存在している.ただし,$l+m+n+1 \neq 0$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を,$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を用いて表せ.
(2)点$\mathrm{P}$が線分$\mathrm{AG}$上にあるとき,$l,\ m,\ n$が満たす条件を求めよ.
(3)点$\mathrm{Q}$が$\triangle \mathrm{BDE}$を含む平面上にある.$\overrightarrow{\mathrm{AQ}}=x \overrightarrow{\mathrm{AB}}+y \overrightarrow{\mathrm{AD}}+z \overrightarrow{\mathrm{AE}}$とするとき,$x,\ y,\ z$が満たす条件を求めよ.
(4)四面体$\mathrm{ABDE}$の体積と四面体$\mathrm{PBDE}$の体積が$2:1$になるとき,$l,\ m,\ n$が満たす条件を求めよ.また,点$\mathrm{P}$がこの条件を満たし,かつ,線分$\mathrm{AG}$上にあるとき,$l,\ m,\ n$の値を求めよ.

\end{mawarikomi}
名古屋市立大学 公立 名古屋市立大学 2015年 第1問
次の問いに答えよ.

(1)平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$に対して,$\overrightarrow{p}=-\overrightarrow{a}+3 \overrightarrow{b}$,$\displaystyle \overrightarrow{q}=\frac{1}{5}(\overrightarrow{a}+3 \overrightarrow{b})$とする.$|\overrightarrow{p}|=5$,$|\overrightarrow{q}|=2$であるとき,次の問いに答えよ.

(i) $\overrightarrow{a},\ \overrightarrow{b}$をそれぞれ$\overrightarrow{p},\ \overrightarrow{q}$を用いて表せ.
(ii) $\sqrt{2} \, |\overrightarrow{a}|=3 \, |\overrightarrow{b}|$のとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$を求めよ.

(2)関数$\displaystyle f(x)=\sin 2x+\sqrt{6}(\cos x-\sin x)-\frac{7}{4}$について,次の問いに答えよ.ただし,$0 \leqq x \leqq 2\pi$とする.

(i) $t=\cos x-\sin x$とおく.$t$のとりうる値の範囲を求め,$f(x)$を$t$の式で表せ.
(ii) $f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
宮城大学 公立 宮城大学 2015年 第5問
平面上の$\triangle \mathrm{ABC}$と点$\mathrm{P}$について,$\overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=t \overrightarrow{\mathrm{AB}}$を満たすとき,次の問いに答えなさい.ここで,$t$は実数とする.

(1)$t=0$とするとき,$\triangle \mathrm{ABC}$に対して,点$\mathrm{P}$はどのような位置にあるか.また,面積比$\triangle \mathrm{PBC}:\triangle \mathrm{PCA}:\triangle \mathrm{PAB}$を求めなさい.
(2)$t$が実数全体を変化するとき,点$\mathrm{P}$はどのような図形を表すかを式で求めなさい.さらに,点$\mathrm{P}$が$\triangle \mathrm{ABC}$の内部にあるための$t$の範囲を求めなさい.
会津大学 公立 会津大学 2015年 第5問
関数$y=xe^{-x}$のグラフを$C$とするとき,以下の問いに答えよ.

(1)関数$y=xe^{-x}$の増減,極値,$C$の凹凸,変曲点を調べて,増減表をつくり,$C$を座標平面上に描け.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$を用いてもよい.
(2)$C$の変曲点における接線を$\ell$とする.$\ell$と$x$軸の交点を求めよ.
(3)$C$と$\ell$と$x$軸で囲まれた部分の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。