タグ「平面」の検索結果

53ページ目:全1904問中521問~530問を表示)
近畿大学 私立 近畿大学 2015年 第3問
座標平面において,中心が原点$\mathrm{O}$で点$\mathrm{P}(1,\ 0)$を通る円$C_1$と,中心が点$\mathrm{Q}(s,\ t)$で点$\mathrm{P}$を通る円$C_2$がある.ただし$t>0$とする.$C_1$と$C_2$の$\mathrm{P}$ではない交点を$\mathrm{R}$とし,$C_1$の境界を含む内部と$C_2$の境界を含む内部の共通部分を$D$とする.

(1)直線$\mathrm{PR}$の方程式は$s(x-[ア])+ty=0$である.$s=0$のとき,点$\mathrm{R}$は$t$の値によらず同じ位置にあって,その座標は$([イ][ウ],\ [エ])$である.

(2)$s=\sqrt{3} \, t$のとき,点$\mathrm{R}$は$s$と$t$の値によらず同じ位置にあって,その座標は$\displaystyle \left( \frac{[オ]}{[カ]},\ \frac{\sqrt{[キ]}}{[ク]} \right)$である.四角形$\mathrm{OPQR}$は円に内接するとする.このとき,点$\mathrm{Q}$の座標は$\displaystyle \left( [ケ],\ \frac{\sqrt{[コ]}}{[サ]} \right)$である.また,領域$D$の面積は$\displaystyle \frac{[シ]}{[ス][セ]} \pi-\frac{\sqrt{[ソ]}}{[タ]}$である.

(3)点$\mathrm{Q}$は$s+t=2$を満たしながら動くとする.線分$\mathrm{QR}$の長さが最小となるような点$\mathrm{R}$の座標は$\displaystyle \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$であり,このときの領域$D$の面積は$\displaystyle \frac{\pi}{4}-\frac{\alpha}{[ナ]}-\frac{[ニ]}{[ヌ]}$となる.ただし,$\displaystyle \sin \alpha=\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2} \right)$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第2問
$xy$平面上に$2$点$\mathrm{P}_1(1,\ 1)$,$\mathrm{P}_2(1,\ 2)$があり,以下の条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$をすべて満たすように$\mathrm{P}_3(x_3,\ y_3)$,$\mathrm{P}_4(x_4,\ y_4)$,$\mathrm{P}_5(x_5,\ y_5)$,$\cdots$を定めるものとする.

$(ⅰ)$ $\displaystyle |\overrightarrow{\mathrm{P}_{n-1} \mathrm{P}_n}|=\frac{1}{3} |\overrightarrow{\mathrm{P}_{n-2} \mathrm{P}_{n-1}}| \quad (n=3,\ 4,\ 5,\ \cdots)$
$(ⅱ)$ $\displaystyle \angle \mathrm{P}_{n-2} \mathrm{P}_{n-1} \mathrm{P}_n=\frac{\pi}{4} \quad (n=3,\ 4,\ 5,\ \cdots)$
$(ⅲ)$ $x_n \geqq x_{n-1} \quad (n=3,\ 4,\ 5,\ \cdots)$

このとき,以下の問いに答えなさい.

(1)ベクトル$\overrightarrow{\mathrm{P}_3 \mathrm{P}_4}$を成分で表しなさい.
(2)ベクトル$\overrightarrow{\mathrm{P}_{2k-1} \mathrm{P}_{2k}} (k=1,\ 2,\ 3,\ \cdots)$の成分を$k$を用いた式で表しなさい.
(3)ベクトル$\overrightarrow{\mathrm{P}_{2k} \mathrm{P}_{2k+1}} (k=1,\ 2,\ 3,\ \cdots)$の成分を$k$を用いた式で表しなさい.
(4)$\displaystyle \lim_{n \to \infty}x_n=X$,$\displaystyle \lim_{n \to \infty}y_n=Y$とおく.このとき$n$を限りなく大きくすると,点$\mathrm{P}_n$は点$\mathrm{P}(X,\ Y)$に限りなく近づいていく.$X,\ Y$を求めなさい.
昭和薬科大学 私立 昭和薬科大学 2015年 第1問
次の問いに答えよ.

(1)${10}^{a+1}=45,\ {10}^{b+2}=75$のとき,$\log_{10}5$を$a,\ b$を用いて表すと,$\displaystyle \log_{10}5=\frac{-a+[ア]b+[イ]}{[ウ]}$である.
(2)次の連立不等式を満たす整数$x$をすべて加えると$[エ][オ]$である.
\[ \left\{ \begin{array}{l}
x^2-12x+10<0 \\
x^2-6x-1>0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
(3)区別のつかない$8$個の球を$4$人で分配する方法は$[カ][キ][ク]$通りである.ただし,$1$個も配分されない人がいる場合も含めて考えることにする.
(4)$\displaystyle \tan (\alpha-\beta)=2,\ \alpha+\beta=\frac{\pi}{2},\ 0<\alpha<\frac{\pi}{2}$のとき,$\tan \alpha=[ケ]+\sqrt{[コ]}$,$\tan \beta=[サ][シ]+\sqrt{[ス]}$である.
(5)点$\mathrm{A}(6,\ 0,\ 5)$,$\mathrm{B}(0,\ -7,\ 3)$,$\mathrm{C}(0,\ 0,\ 1)$に対して,直線$\mathrm{AB}$と$xy$平面の交点を$\mathrm{P}$,直線$\mathrm{AC}$と$xy$平面の交点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式は
\[ y=\frac{[セ]}{[ソ]}x+\frac{[タ]}{[チ]},\quad z=0 \]
である.
(6)$\displaystyle \sum_{k=1}^n k \cdot 3^k=\frac{[ツ]}{[テ]} \{([ト]n-1)3^n+1 \}$である.
昭和薬科大学 私立 昭和薬科大学 2015年 第3問
$1$辺の長さが$6$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える.辺$\mathrm{FG}$の中点を$\mathrm{I}$とし,辺$\mathrm{GH}$を$1:2$に内分する点を$\mathrm{J}$とする.また,$3$点$\mathrm{A}$,$\mathrm{I}$,$\mathrm{J}$を通る平面と辺$\mathrm{BF}$の交点を$\mathrm{K}$とし,$\mathrm{A}$から$\mathrm{B}$,$\mathrm{D}$,$\mathrm{E}$に向かう単位ベクトルをそれぞれ$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$とする.

(1)$\overrightarrow{\mathrm{AI}},\ \overrightarrow{\mathrm{AJ}}$を$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{I}$,$\mathrm{J}$を通る平面と垂直なベクトル$\overrightarrow{n}$が$\overrightarrow{n}=-3 \overrightarrow{i}+a \overrightarrow{j}+b \overrightarrow{k}$と表されるとき,$a$と$b$の値を求めよ.
(3)線分$\mathrm{BK}$の長さを求めよ.
東京理科大学 私立 東京理科大学 2015年 第2問
$s$を$-1 \leqq s \leqq 1$を満たす実数とする.$xy$平面上のベクトル$\overrightarrow{a_s},\ \overrightarrow{b_s},\ \overrightarrow{c_s}$を
\[ \overrightarrow{a_s}=\left( s,\ \sqrt{1-s^2} \right),\quad \overrightarrow{b_s}=\left( \sqrt{1-s^2},\ -s \right),\quad \overrightarrow{c_s}=\left( s \sqrt{1+s^2},\ \sqrt{1-s^4} \right) \]
と定める.$t$を実数とし,$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を


$\displaystyle \overrightarrow{a_s}+\frac{t}{|\overrightarrow{b_s}|} \overrightarrow{b_s}=(f_t(s),\ g_t(s))$

$\displaystyle \overrightarrow{a_s}-\frac{t}{|\overrightarrow{c_s}|} \overrightarrow{c_s}=(h_t(s),\ k_t(s))$


により定める.さらに,$s$を媒介変数とする$2$つの曲線

$\displaystyle C_t:x=f_t(s),\ y=g_t(s) \quad \left( -\frac{1}{2} \leqq s \leqq 1 \right),$
$K_t:x=h_t(s),\ y=k_t(s) \quad (-1 \leqq s \leqq 1)$

を考える.次の各問いに答えよ.

(1)$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を$s$と$t$を用いて表せ.
(2)$\overrightarrow{a_s}$と$\overrightarrow{b_s}$のなす角,および,$\overrightarrow{a_s}$と$\overrightarrow{c_s}$のなす角を求めよ.
(3)${f_t(s)}^2+{g_t(s)}^2$を$t$のみを用いて表せ.
(4)$t$が$0$から$\sqrt{3}$まで動くとき,$C_t$が通過する部分を$D$とする.$D$を図示せよ.
(5)$(4)$で定めた$D$の面積を求めよ.
(6)$(4)$で定めた$D$を$x$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
(7)$K_{\frac{1}{2}},\ K_1,\ K_{\frac{3}{2}}$を図示せよ.
(8)$t$が$\displaystyle \frac{1}{2} \leqq |t-1| \leqq 1$を満たす範囲を動くとき,$K_t$が通過する部分の面積を求めよ.
京都薬科大学 私立 京都薬科大学 2015年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$2$次関数$f(x)=ax^2+bx+2a^2$は,$x=-1$で最大値をとり,$f(1)=14$を満たす.このとき,$a=[ア]$,$b=[イ]$で,$f(x)$の最大値は$[ウ]$である.
(2)$1$つのさいころを$1$の目が出るまで投げ続ける.ただし,投げる回数は最大$100$回とする.このとき,ちょうど$n$回($n<100$)投げてやめる確率は$[エ]$で,投げる回数が$n$回以下($n<100$)でやめる確率は$[オ]$である.また,$1$の目が$2$回出るまで投げ続けるとき(最大$100$回),投げる回数が$n$回以下($n<100$)でやめる確率は$[カ]$である.
(3)平面上の$\triangle \mathrm{OAB}$において,$\mathrm{OA}=4$,$\mathrm{OB}=3$,$\displaystyle \cos \angle \mathrm{AOB}=\frac{2}{3}$が成立しているとする.このとき,$\mathrm{AB}=[キ]$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表し,$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{5}{2} \overrightarrow{a}+2 \overrightarrow{b}$を満たす点$\mathrm{C}$をとれば,$\mathrm{AC}=[ク]$,$\cos \angle \mathrm{BAC}=[ケ]$が成立する.
(4)不等式$\sin 2\theta+\sin 4\theta>\sin 3\theta$を満たす$\theta$の範囲は$[コ]<\theta<[サ]$および$[シ]<\theta<[ス]$である.ただし,$0<\theta<\pi$とする.
(5)ある正の数$a$を底としたときの,$2$と$5$の対数の近似値がそれぞれ$\log_a 2=0.693$,$\log_a 5=1.609$であるとする.また,$\sqrt[4]{10}=1.778$とする.指数関数$y=pa^{-qx}$($p,\ q$は正の数)において,$x=1$のとき$y=10$,$x=5$のとき$y=1$となるならば,$p=[セ]$,$q=[ソ]$である.また,$y$がちょうど$p$の半分となるときの$x$の値は$[タ]$である.なお,解答は小数点以下$2$桁で示すこと(必要ならば小数第$3$位を四捨五入せよ).
京都薬科大学 私立 京都薬科大学 2015年 第2問
次の$[ ]$にあてはまる数を記入せよ.

座標平面上に$4$点$\mathrm{A}(6,\ 6)$,$\mathrm{B}(-3,\ 3)$,$\mathrm{C}(2,\ -2)$,$\mathrm{D}(-6,\ -6)$がある.

(1)$\triangle \mathrm{ABC}$の外心の座標は$([ア],\ [イ])$であり,外接円の半径は$[ウ]$である.この円を$C$とする.
(2)円$C$上を動く点$\mathrm{P}$と点$\mathrm{D}$に対して,線分$\mathrm{DP}$を$1:2$に内分する点の軌跡は円になる.この円の中心の座標は$([エ],\ [オ])$であり,半径は$[カ]$である.
(3)点$\mathrm{A}$での円$C$の接線を$\ell_1$とする.接線$\ell_1$の方程式は$y=[キ]x+[ク]$であり,$\ell_1$と$x$軸との交点$\mathrm{E}$の座標は$([ケ],\ 0)$である.
(4)点$\mathrm{E}$を通り,円$C$に接する直線は$2$本ある.$\ell_1$と異なる接線を$\ell_2$とし,$\ell_2$は点$\mathrm{F}$で円$C$に接するとする.点$\mathrm{F}$の座標は$([コ],\ [サ])$であり,$\ell_2$の方程式は$y=[シ]x+[ス]$である.
千葉工業大学 私立 千葉工業大学 2015年 第4問
$xy$平面において,放物線$C:y=9x^2$を$x$軸方向に$t$(ただし,$t>0$),$y$軸方向に$8$だけ平行移動して得られる放物線を$D$とする.また,$C$上の点$(p,\ 9p^2)$における$C$の接線を$\ell$とする.このとき,次の問いに答えよ.

(1)$D$の方程式は$y=9x^2-[アイ]tx+[ウ]t^2+[エ]$である.
(2)$\ell$の方程式は$y=[オカ]px-[キ]p^2$である.
以下,$\ell$は$D$にも接しているとする.
(3)$p$を$t$を用いて表すと,$\displaystyle p=\frac{[ク]}{[ケ]t}$である.また,$\ell$と$D$の接点の$x$座標$X$を$t$を用いて表すと
\[ X=t+\frac{[コ]}{[サ]t} \]
である.
(4)$X$は$\displaystyle t=\frac{[シ]}{[ス]}$のとき,最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.このとき,$C$と$D$と$\ell$で囲まれた部分の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
東京薬科大学 私立 東京薬科大学 2015年 第2問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)座標平面上に$(0,\ 0)$,$(1,\ 0)$,$(1,\ 1)$,$(0,\ 1)$を頂点とする正方形$\mathrm{A}$と,その内部を通過する放物線$C_1:y=x^2$,$C_2:y=x^2+a$,$C_3:y=bx^2$がある.

(i) $C_1$上の点$(x,\ y)$と頂点$(0,\ 1)$との距離が最小になるのは$\displaystyle x=\frac{\sqrt{[ス]}}{[セ]}$のときであり,その最小値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.
(ii) $C_2$が$\mathrm{A}$の面積を$2$等分するとき,$\displaystyle a=1-\left( \displaystyle\frac{[チ]}{[ツ]} \right)^{\frac{2}{3}}$である.

(iii) $C_3$が$\mathrm{A}$の面積を$2$等分するとき,$\displaystyle b=\frac{[テト]}{[ナ]}$である.

(2)$p$を負でない実数とする.$2$次方程式
\[ x^2-(p^2+3)x+1+2p=0 \]
の異なる$2$つの解を$\displaystyle \tan \alpha,\ \tan \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$とする.$p=0$のとき,$\displaystyle \alpha+\beta=\frac{[ニ]}{[ヌ]} \pi$であり,

$p>0$のとき,$\tan (\alpha+\beta)$のとり得る値の最大値は$[$*$ネ] \sqrt{[ノ]}$であるから,$\alpha+\beta$の最大値は$\displaystyle \frac{[ハ]}{[ヒ]} \pi$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第4問
下図のように太陽が雲間から見えた.観察された太陽を半径$r$の円と仮定し,図のように見えた太陽の円周上の$2$点を$\mathrm{A}$,$\mathrm{B}$とし,線分$\mathrm{AB}$の中点を$\mathrm{C}$,円周上に一点$\mathrm{D}$を線分$\mathrm{CD}$と$\mathrm{AB}$が互いに直交するようにとる.$\mathrm{AB}=a$,$\mathrm{CD}=c$とおくとき,$r$と$a,\ c$の関係を式で表わすと$[$8$]$となる.このとき$r$の最小値を$c$を用いて表わすと,$[$9$]$である.また$c<r$の場合,観察された太陽の中心を$\mathrm{O}$とする.この円を$\mathrm{OD}$を通る直径を軸に回転させてできる球において$\mathrm{AB}$を通り$\mathrm{OD}$に垂直な平面で$2$つの図形に分けたとき,点$\mathrm{D}$を含む部分の体積を$a,\ c$を用いて表すと$[$10$]$である.
(図は省略)
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。