タグ「平面」の検索結果

52ページ目:全1904問中511問~520問を表示)
日本女子大学 私立 日本女子大学 2015年 第3問
座標平面上の$2$つの放物線$y=4x^2+12x+2$と$y=x^2+2$をそれぞれ$C_1$と$C_2$とする.放物線$C_1$と$C_2$の両方に接し,傾きが正の直線を$\ell$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$の方程式を$y=ax+b$($a,\ b$は定数)とおく.$C_1$と$\ell$の接点の$x$座標と$C_2$と$\ell$の接点の$x$座標の小さい方を$s$,大きい方を$t$とする.連立不等式
\[ y \leqq 4x^2+12x+2,\quad y \leqq x^2+2,\quad y \geqq ax+b,\quad s \leqq x \leqq t \]
の表す領域の面積を求めよ.
日本女子大学 私立 日本女子大学 2015年 第2問
座標平面の原点を$\mathrm{O}$とする.放物線$y=(x-3)^2$と直線$y=mx$は$2$点$\mathrm{A}(\alpha,\ m \alpha)$,$\mathrm{B}(\beta,\ m \beta)$で交わり,点$\mathrm{A}$は線分$\mathrm{OB}$を$1:2$に内分するものとする.ただし,$m<0$とする.

(1)定数$m,\ \alpha,\ \beta$の値を求めよ.
(2)連立不等式
\[ y \leqq (x-3)^2,\quad y \geqq mx,\quad y \geqq 0,\quad \alpha \leqq x \leqq 3 \]
が表す領域の面積を求めよ.
西南学院大学 私立 西南学院大学 2015年 第4問
平面上に$2$つの円があり,それぞれの半径は$7$と$4$である.この$2$つの円の中心間の距離を$d$,共通接線の数を$n$とすると,$d$の値に応じて$n$の値が定まる.ただし,共通接線が存在しない場合は$n=0$とする.以下の問に答えよ.

(1)$d$が任意の値をとるとき,$n$の最大値は$[ヌ]$である.
(2)$d \leqq 11$のとき,$n$の最大値は$[ネ]$である.
(3)$d<[ノ]$のとき,$n=0$である.
西南学院大学 私立 西南学院大学 2015年 第5問
互いに平行ではない平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$について,ベクトルの和の結合法則
\[ (\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c}) \]
が成立していることを,有向線分を用いた図で確かめよ.ただし,成分を用いてはならない.
西南学院大学 私立 西南学院大学 2015年 第5問
実数$a$の関数$F(a)$が
\[ F(a)=\int_0^1 |x(x-a)| \, dx \]
で与えられているとき,以下の問に答えよ.

(1)$a>0$のとき,$xy$平面上に$y=|x(x-a)|$のグラフを描け.
(2)$F(a)$を求めよ.
(3)$ab$平面上に$b=F(a)$のグラフを描け.
(4)$F(a)$の最小値と,そのときの$a$の値を求めよ.
中部大学 私立 中部大学 2015年 第2問
平面上に,$\sqrt{2}$だけ離れた$2$つの点がある.これらの点からの距離がともに$1$以下となる領域の面積を求めよ.
京都産業大学 私立 京都産業大学 2015年 第3問
$xy$平面上に$\triangle \mathrm{OAB}$がある.ただし,点$\mathrm{O}$は原点,点$\mathrm{A}$の座標は$(5,\ 0)$,点$\mathrm{B}$の$y$座標は正であり,$\mathrm{OB}=4$,$\angle \mathrm{AOB}=\theta$であるとする.さらに,$\triangle \mathrm{OAB}$の外側に,辺$\mathrm{AB}$を共有する正方形$\mathrm{ABCD}$がある.

(1)$\theta$を用いて表すと,$\mathrm{B}$の座標は$[ア]$であり,$\mathrm{C}$の座標は$[イ]$である.
(2)$\mathrm{C}$の$x$座標は$\theta=[ウ]$のとき最大値をとり,$\mathrm{C}$の$y$座標は$\theta=[エ]$のとき最大値をとる.
以下では,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$が一直線上にあるとする.
(3)$\mathrm{AB}=[オ]$である.$\triangle \mathrm{OAB}$の内接円の半径は$[カ]$である.
(4)$\triangle \mathrm{OAD}$の外接円の半径を求めよ.
京都産業大学 私立 京都産業大学 2015年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)$\displaystyle x=\frac{2}{\sqrt{6}+\sqrt{2}},\ y=\frac{\sqrt{6}+\sqrt{2}}{2}$のとき,$x^3y+xy^3$の値は$[ ]$である.
(2)不等式$-3<x^2-4x<45$を満たす$x$の値の範囲は$[ ]$である.
(3)$3$次方程式$x^3-3x^2+4x-2=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とするとき$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=[ ]$である.
(4)座標平面上の$4$点$\mathrm{A}(2,\ -2)$,$\mathrm{B}(5,\ 1)$,$\mathrm{C}(6,\ -2)$,$\mathrm{D}(3,\ a)$に対し,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CD}}$が垂直になるのは$a=[ ]$のときである.
(5)$xy$平面上の$2$点$(0,\ 1)$,$(0,\ -1)$からの距離の和が$4$である曲線を
\[ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>0,\ b>0) \]
の形で表すと$(a,\ b)=[ ]$である.
京都産業大学 私立 京都産業大学 2015年 第2問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b)$がある.ここで,$a,\ b$は正の整数である.

$\triangle \mathrm{OAB}$の内部の格子点の個数を$f(a,\ b)$と表す.ここで,格子点とは,$x$座標,$y$座標がともに整数である点のことである.また,三角形の内部は,その三角形の頂点,辺を含まないものとする.
(1)$a=4,\ b=4$のとき,$\triangle \mathrm{OAB}$の内部の格子点は$3$個であり,それらの座標は$[ ]$である.したがって,$f(4,\ 4)=3$である.
(2)$f(4,\ 8)=[ ]$である.
(3)$2$以上の整数$n$に対し,$f(n,\ n)$を$n$の式で表すと$[ ]$である.
(4)$2$以上の整数$n$に対し,$f(n,\ 2n)$を$n$の式で表すと$[ ]$である.
(5)$n$を$2$以上の整数,$k$を$3$以上の整数とする.$f(n,\ kn)$を$n$と$k$の式で表すと$[ ]$である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。