タグ「平面」の検索結果

41ページ目:全1904問中401問~410問を表示)
島根大学 国立 島根大学 2015年 第2問
$xy$平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}$,$\mathrm{B}$がある.$\overrightarrow{\mathrm{OA}}$の大きさを$3$,$\overrightarrow{\mathrm{OB}}$の大きさを$4$とする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$\displaystyle \frac{2 \pi}{3}$であるとき,$\overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}$の大きさを求めよ.
(2)$\alpha$が$\displaystyle 0<\alpha<\frac{\pi}{2}$の範囲にあり,$\displaystyle \sin \alpha=\frac{1}{4}$をみたすとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$4 \alpha$であるとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(3)点$\mathrm{E}(1,\ 0)$に対し,
\[ 4 \overrightarrow{\mathrm{OA}}+3 \overrightarrow{\mathrm{OB}}-12 \overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{0}} \]
が成り立つとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を求めよ.
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
奈良女子大学 国立 奈良女子大学 2015年 第1問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{P}$があり,点$\mathrm{P}$は
\[ 4(\overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{CP}})=\overrightarrow{\mathrm{CB}} \]
をみたしているとする.辺$\mathrm{AB}$,$\mathrm{AC}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{MP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)線分の長さの比$\mathrm{MP}:\mathrm{NP}$を求めよ.
(4)三角形$\mathrm{PAB}$,$\mathrm{PBC}$,$\mathrm{PCA}$の面積をそれぞれ$S,\ T,\ U$とする.面積の比$S:T$と$T:U$を求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第4問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2015年 第6問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2015年 第4問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
電気通信大学 国立 電気通信大学 2015年 第2問
関数$f(t),\ g(t)$を次のように定義する.ただし,$e$は自然対数の底とする.
\[ f(t)=(t-1)e^{-t},\quad g(t)=(t-1)^2e^{-t} \]
$xy$平面上の曲線$C$が,媒介変数$t$を用いて
\[ x=f(t),\quad y=g(t) \quad (1 \leqq t \leqq 3) \]
と表されるとき,以下の問いに答えよ.

(1)$f(t)=g(t)$となる$t$の値を$\alpha,\ \beta (\alpha<\beta)$とする.$\alpha,\ \beta$の値を求めよ.さらに,$\alpha \leqq t \leqq \beta$のとき,$f(t) \geqq g(t)$であることを示せ.
(2)導関数$f^\prime(t),\ g^\prime(t)$をそれぞれ求めよ.さらに,区間$\alpha \leqq t \leqq \beta$において,関数$f(t)$,$g(t)$がともに単調に増加することを示せ.
(3)次の定積分をそれぞれ求めよ.
\[ I_1=\int_0^1 ue^{-2u} \, du,\quad I_2=\int_0^1 u^2 e^{-2u} \, du,\quad I_3=\int_0^1 u^3e^{-2u} \, du \]
(4)曲線$C$と直線$y=x$で囲まれた図形の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2015年 第2問
平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線を下ろし,直線$\mathrm{OB}$との交点を$\mathrm{H}$とする.また,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線を下ろし,直線$\mathrm{OA}$との交点を$\mathrm{I}$とする.直線$\mathrm{AH}$と直線$\mathrm{BI}$の交点を$\mathrm{P}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{OP}$の長さを求めよ.
電気通信大学 国立 電気通信大学 2015年 第3問
次の関数$f(x),\ g(x)$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.
\[ f(x)=\frac{x+1}{\sqrt{x^2+1}},\quad g(x)=\log (x+\sqrt{x^2+1}) \]

(1)極限値$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$を求め,関数$f(x)$の増減を調べよ.さらに,$f(x)$の最大値を求めよ.
(3)次の方程式がただ$1$つの実数解を持つような定数$m$の条件を求めよ.
\[ m \sqrt{x^2+1}=x+1 \]
(4)導関数$g^\prime(x)$を求めよ.さらに,$xy$平面上において,曲線$y=f(x)$,$x$軸および$y$軸で囲まれた図形を$D$とする.図形$D$の面積$S$を求めよ.
(5)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
宮崎大学 国立 宮崎大学 2015年 第3問
座標平面上に点$\mathrm{P}$があり,次のルールにより,点$\mathrm{P}$は移動する.

$a,\ b,\ c$の文字がそれぞれ$1$つずつ書かれた球$3$個が入った袋から,$1$個取り出してそこに書かれている文字を読み,その文字が

$a$のとき,点$\mathrm{P}$は$x$軸の正の方向へ$1$だけ移動し,
$b$のとき,点$\mathrm{P}$は$x$軸の負の方向へ$1$だけ移動し,
$c$のとき,点$\mathrm{P}$は$y$軸の正の方向へ$1$だけ移動する.

最初,点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.この試行を,取り出した球を元に戻しながら,$5$回続けて行う.例えば,これによって得られた$5$個の文字が順に$b \to a \to c \to c \to a$であるとすれば,上のルールにより,点$\mathrm{P}$の位置の座標は,
\[ (0,\ 0) \to (-1,\ 0) \to (0,\ 0) \to (0,\ 1) \to (0,\ 2) \to (1,\ 2) \]
と変化する.
このとき,次の各問に答えよ.

(1)$y$軸上で点$\mathrm{P}$の移動が終了する場合,終了したときの位置の座標をすべて求めよ.
(2)点$\mathrm{P}$の移動が終了する位置の相異なる座標の個数を求めよ.
(3)点$\mathrm{P}$の移動が終了する位置の座標$(x,\ y)$が$|x| \leqq 1$,$1 \leqq y \leqq 2$となる確率を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。