タグ「平面」の検索結果

39ページ目:全1904問中381問~390問を表示)
名古屋大学 国立 名古屋大学 2015年 第1問
座標平面上の円$C:x^2+(y-1)^2=1$と,$x$軸上の$2$点$\mathrm{P}(-a,\ 0)$,$\mathrm{Q}(b,\ 0)$を考える.ただし,$a>0$,$b>0$,$ab \neq 1$とする.点$\mathrm{P}$,$\mathrm{Q}$のそれぞれから$C$に$x$軸とは異なる接線を引き,その$2$つの接線の交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)直線$\mathrm{QR}$の方程式を求めよ.
(2)$\mathrm{R}$の座標を$a,\ b$で表せ.
(3)$\mathrm{R}$の$y$座標が正であるとき,$\triangle \mathrm{PQR}$の周の長さを$T$とする.$T$を$a,\ b$で表せ.
(4)$2$点$\mathrm{P}$,$\mathrm{Q}$が,条件「$\mathrm{PQ}=4$であり,$\mathrm{R}$の$y$座標は正である」を満たしながら動くとき,$T$を最小とする$a$の値とそのときの$T$の値を求めよ.
滋賀大学 国立 滋賀大学 2015年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円に内接する正六角形のうち,点$\mathrm{A}_1(1,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_1$から反時計回りに,$\mathrm{B}_1$,$\mathrm{C}_1$,$\mathrm{D}_1$,$\mathrm{E}_1$,$\mathrm{F}_1$とする.同様に,$2$以上の自然数$n$に対して,$\mathrm{O}$を中心とする半径$n$の円に内接する正六角形のうち,点$\mathrm{A}_n(n,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_n$から反時計回りに,$\mathrm{B}_n$,$\mathrm{C}_n$,$\mathrm{D}_n$,$\mathrm{E}_n$,$\mathrm{F}_n$とする.$\overrightarrow{\mathrm{OA}_1}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}_1}=\overrightarrow{b}$とするとき,次の問いに答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{OC}_1}$,$\overrightarrow{\mathrm{B}_3 \mathrm{C}_7}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$s,\ t$を実数として,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b}$と表される点$\mathrm{P}$が,正六角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n \mathrm{E}_n \mathrm{F}_n$の辺$\mathrm{A}_n \mathrm{F}_n$上にあるための必要十分条件を$s,\ t,\ n$を用いて表せ.ただし,$n$は自然数とし,頂点$\mathrm{A}_n$,$\mathrm{F}_n$は辺$\mathrm{A}_n \mathrm{F}_n$上の点とする.
(3)点$\mathrm{B}_3$,$\mathrm{C}_7$,$\mathrm{E}_2$と辺$\mathrm{A}_n \mathrm{F}_n$上の点$\mathrm{P}$がある平行四辺形の頂点となるような自然数$n$を求め,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第2問
$e$を自然対数の底とする.$xy$平面上で,曲線$y=e^{2x}$の,点$(t,\ e^{2t})$における接線を$\ell_t$とし,点$(s,\ e^{2s})$における接線を$\ell_s$とする.$\ell_s$の傾きが$\ell_t$の傾きの$e$倍に等しいとする.

(1)$\ell_t$と$\ell_s$の交点の座標を$t$を用いて表せ.
(2)$\ell_s$を,$y$軸に関して対称移動して得られる直線を$L$とする.$L$と直線$x=t$との交点を$\mathrm{P}_t$とする.$\mathrm{P}_t$の$y$座標を$t$を用いて表せ.
(3)$a$を正の実数とする.$t$が$0 \leqq t \leqq a$の範囲を動くとき,$(2)$で定めた点$\mathrm{P}_t$が描く曲線を$C$とする.$C$と$x$軸および直線$x=a$とで囲まれた図形の面積を求めよ.
茨城大学 国立 茨城大学 2015年 第2問
座標平面上の相異なる$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$2$つの条件
\[ \left\{ \begin{array}{l}
|\overrightarrow{\mathrm{PQ}}|=|\overrightarrow{\mathrm{QR}}| \\
\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=-\displaystyle\frac{1}{3} \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \cdots\cdots (*) \]
を満たしながら動くものとする.$|\overrightarrow{\mathrm{PQ}}|$を$a$とする.以下の各問に答えよ.

(1)$|\overrightarrow{\mathrm{PR}}|$を$a$で表せ.
(2)$\displaystyle \angle \mathrm{PQR}=\frac{2}{3} \pi$のときの$a$を求めよ.また,$\angle \mathrm{PQR}=\pi$のときの$a$を求めよ.
(3)$a$がとり得る値の範囲を求めよ.
(4)原点を$\mathrm{O}$とし,点$\mathrm{R}$を$(1,\ 0)$に固定する.点$\mathrm{P}$,$\mathrm{Q}$が$(*)$および
\[ |\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{PQ}}| \]
を満たしながら動くとする.点$\mathrm{P}$が描く軌跡を求めよ.
(5)$(4)$において,点$\mathrm{P}$が描く軌跡の長さを求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第3問
$xy$平面上の曲線$C_1:y=x^2$を考える.$C_1$上に異なる$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$をとり,点$\mathrm{A}$における$C_1$の接線と点$\mathrm{B}$における$C_1$の接線の交点を$\mathrm{P}$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$の内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$を$a,\ b$を用いて表せ.
(3)$(1)$で求めた点$\mathrm{P}$が,$xy$平面上の曲線$C_2:y=x^2-x (0<x<1)$上にあるとする.このとき,$(1)$で求めた点$\mathrm{P}$の$x$座標を$s$とおき,$(2)$で求めた内積を$s$で表せ.
(4)内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$を最大にする$C_2$上の点$\mathrm{P}$の座標を求めよ.
$*$ \ $(2)$~$(4)$については,必答範囲外からの出題のため,技術・情報科学の受験者全員に対し,正解とする.
秋田大学 国立 秋田大学 2015年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$,$\mathrm{OA}=1$,$\mathrm{OB}=\mathrm{OC}=\sqrt{2}$,$\angle \mathrm{AOB}=\angle \mathrm{AOC}={90}^\circ$,$\angle \mathrm{BOC}=\theta$とする.点$\mathrm{D}$を$\mathrm{BC}$の中点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)点$\mathrm{P}$を$\mathrm{AD}$上の点とし,$\mathrm{AP}:\mathrm{PD}=t:(1-t)$とするとき,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて$\overrightarrow{\mathrm{OP}}$を表せ.
(2)点$\mathrm{P}$を$\mathrm{AD}$上の動点とする.$\mathrm{OP}$の長さが最小となるとき,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \theta$を用いて$\overrightarrow{\mathrm{OP}}$を表せ.
(3)点$\mathrm{Q}$を以下の$①$~$③$を満たすように定める.このとき$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \theta$を用いて$\overrightarrow{\mathrm{OQ}}$を表せ.

\mon[$①$] 四面体$\mathrm{OABC}$の体積と四面体$\mathrm{QABC}$の体積は等しい
\mon[$②$] $\mathrm{QA}=\mathrm{QB}=\mathrm{QC}$
\mon[$③$] 線分$\mathrm{OQ}$は$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面と交点をもたない.
岩手大学 国立 岩手大学 2015年 第2問
座標平面上に$2$点$\mathrm{A}(3,\ 2)$,$\mathrm{B}(1,\ 3)$をとる.$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{X}$,$\ell$と$y$軸との交点を$\mathrm{Y}$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{AX}:\mathrm{AY}$をできるだけ簡単な整数比で表せ.
(3)$\mathrm{PX}:\mathrm{PY}=\mathrm{AX}:\mathrm{AY}$を満たすような点$\mathrm{P}(x,\ y)$の軌跡の方程式を求めよ.
(4)点$\mathrm{P}(x,\ y)$が,$(3)$で求めた軌跡上を動くとき,$2x+y$の最大値および最小値を求めよ.
岩手大学 国立 岩手大学 2015年 第3問
$\mathrm{O}$を原点とする座標空間に$3$つの点$\mathrm{A}(2,\ 1,\ 0)$,$\mathrm{B}(5,\ 2,\ -1)$,$\mathrm{C}(1,\ -5,\ 1)$をとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,また,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面を$S$とする.このとき,以下の問いに答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を求めよ.また,$\cos \angle \mathrm{AOB}$を求めよ.
(2)$\triangle \mathrm{OAB}$の面積を求めよ.
(3)点$\mathrm{C}$から平面$S$に下ろした垂線と平面$S$との交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b}$を満たす$s,\ t$を求めよ.
(4)四面体$\mathrm{OABC}$の体積を求めよ.
大阪教育大学 国立 大阪教育大学 2015年 第2問
$xy$平面において,ベクトル$\overrightarrow{a}=(1,\ \sqrt{3})$,$\overrightarrow{b}=(x,\ y)$に対して,
\[ |\overrightarrow{a} \cdot \overrightarrow{b}| \geqq 1 \quad \text{かつ} \quad |\overrightarrow{b}| \leqq 1 \]
を満たす点$(x,\ y)$の領域を$D$とする.ただし,$\overrightarrow{a} \cdot \overrightarrow{b}$は$\overrightarrow{a}$と$\overrightarrow{b}$の内積,$|\overrightarrow{b}|$はベクトル$\overrightarrow{b}$の長さを表す.以下の問に答えよ.

(1)$D$を図示せよ.
(2)$D$の面積を求めよ.
山形大学 国立 山形大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に放物線$y=x^2$がある.この放物線上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$があり,$a>0$,$b<0$であるとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$が垂直であるとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB}}|$と$\triangle \mathrm{OAB}$の面積を$a$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OB}}|=3 \sqrt{10}$のとき,点$\mathrm{B}$の座標と$a$を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。