タグ「平面」の検索結果

38ページ目:全1904問中371問~380問を表示)
東京学芸大学 国立 東京学芸大学 2015年 第4問
次の$(1),\ (2)$から$1$題を選択し解答せよ.

(1)等式$\displaystyle |\displaystyle\frac{i|{z}-1}=|\displaystyle\frac{1|{z}-k}$を満たすすべての複素数$z$に対して不等式$|z| \leqq 2$が成り立つような実数$k$の値の範囲を求めよ.
(2)実数$k$と$2$次の正方行列$A$は$A^2-kA+3E=O$を満たすとする.また,座標平面上で$A$の表す移動によって,点$(1,\ 1)$は点$(3,\ 3)$へ移り,直線$y=-x$上の点は同じ直線上の点に移るとする.このとき,$A$を求めよ.ただし,$E$は単位行列,$O$は零行列を表す.
茨城大学 国立 茨城大学 2015年 第3問
$\mathrm{O}$を原点とする$xyz$空間内の$2$点を$\mathrm{A}(3,\ -1,\ 2)$,$\mathrm{B}(0,\ 5,\ 8)$とする.$\overrightarrow{\mathrm{AB}}=3 \overrightarrow{\mathrm{AP}}$を満たす点$\mathrm{P}$を通り,直線$\mathrm{AB}$に垂直な平面$\alpha$を考える.このとき,以下の各問に答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)平面$\alpha$が$x$軸,$y$軸,$z$軸と交わる点をそれぞれ$\mathrm{L}$,$\mathrm{M}$,$\mathrm{N}$とするとき,四面体$\mathrm{OLMN}$の体積を求めよ.
茨城大学 国立 茨城大学 2015年 第4問
$xy$平面において,関数$\displaystyle y=\frac{1}{\sqrt{x}}$が表す曲線を$C$とし,$C$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{\sqrt{t}} \right)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$とする.このとき,以下の各問に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)曲線$C$,$x$軸,直線$x=t$,および点$\mathrm{Q}$を通り$x$軸に垂直な直線で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
(3)線分$\mathrm{PQ}$の長さを$L(t)$とする.点$\mathrm{P}$が$C$上を動くとき,$L(t)$の最小値を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.このとき,長さの比$\mathrm{BP}^\prime:\mathrm{P}^\prime \mathrm{C}$を求めよ.
(4)$\mathrm{P}^\prime$を$(3)$で与えたものとする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.このとき,長さの比$\mathrm{BP}^\prime:\mathrm{P}^\prime \mathrm{C}$を求めよ.
(4)$\mathrm{P}^\prime$を$(3)$で与えたものとする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.このとき,長さの比$\mathrm{BP}^\prime:\mathrm{P}^\prime \mathrm{C}$を求めよ.
(4)$\mathrm{P}^\prime$を$(3)$で与えたものとする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第4問
放物線$y=x^2+ax+b$により,$xy$平面を$2$つの領域に分割する.以下の問いに答えよ.

(1)点$(-1,\ 4)$と点$(2,\ 8)$が放物線上にはなく別々の領域に属するような$a,\ b$の条件を求めよ.さらに,その条件を満たす$(a,\ b)$の領域を$ab$平面に図示せよ.
(2)$a,\ b$が$(1)$で求めた条件を満たすとき,$a^2+b^2$がとり得る値の範囲を求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第6問
$xy$平面において,点$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円を$C$とする.円$C$上に原点$\mathrm{O}$とは異なる点$\mathrm{P}$を取り,直線$\mathrm{OP}$と直線$y=1$の交点を$\mathrm{Q}$とする.また,$x$座標が$\mathrm{Q}$と同じで,$y$座標が$\mathrm{P}$と同じである点を$\mathrm{R}$とする.

(1)点$\mathrm{P}$が円$C$上の原点$\mathrm{O}$とは異なる点全体を動くとき,点$\mathrm{R}$の軌跡の方程式を求めよ.
(2)$(1)$で求めた曲線と$x$軸および$2$直線$x=0$,$x=1$で囲まれた図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第6問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。