タグ「平面」の検索結果

37ページ目:全1904問中361問~370問を表示)
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)$\log_{10}2=0.3010$とする.$2^{2015}$の桁数を求めよ.
(2)座標空間において,点$(a,\ 0,\ -1)$を中心とする半径$3$の球面が,$yz$平面と交わってできる円の半径が$2$のとき,$a$の値を求めよ.
(3)$y=-3x^3+9x-1$の極小値を求めよ.
(4)$\displaystyle y=2 \sin \left( \theta+\frac{\pi}{3} \right)$のグラフをかけ.ただし,$0 \leqq \theta \leqq 2\pi$とする.
山梨大学 国立 山梨大学 2015年 第2問
座標平面上において,曲線$C:y=e^{2x}$上の点$\mathrm{P}(a,\ e^{2a})$における接線$\ell$は原点$\mathrm{O}$を通るとする.

(1)$a$の値を求めよ.
(2)不定積分$\displaystyle \int \log t \, dt$および$\displaystyle \int (\log t)^2 \, dt$を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
山梨大学 国立 山梨大学 2015年 第3問
座標平面上の放物線$\displaystyle y=\frac{x^2}{2}+\frac{5}{2}$を$C$とし,$a$を$2$より小さい実数とする.点$\mathrm{A}(a,\ a)$から$C$に引いた異なる$2$つの接線の接点を各々$\displaystyle \mathrm{P} \left( p,\ \frac{p^2}{2}+\frac{5}{2} \right)$,$\displaystyle \mathrm{Q} \left( q,\ \frac{q^2}{2}+\frac{5}{2} \right)$とする.ただし,$p<q$とする.

(1)$p$および$q$を$a$を用いて表せ.
(2)$\displaystyle \theta=\angle \mathrm{PAQ} \ \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,$\tan \theta$を$a$を用いて表せ.
(3)$a=1$のとき,$\triangle \mathrm{PAQ}$の外接円の半径$R$を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第5問
$a$を定数とする.$2$曲線

$\displaystyle C_1:y=-\frac{3}{2} \cos 2x \quad (0<x<2\pi)$
$\displaystyle C_2:y=a \cos x-a-\frac{3}{4} \quad (0<x<2\pi)$

を考える.$C_1$と$C_2$は共有点をもち,ある共有点での$C_1$と$C_2$の接線は一致し,かつその傾きは$0$でないとする.次の問に答えよ.

(1)$a$の値を求めよ.
(2)$C_1$と$C_2$の概形を同一座標平面上にかけ.
(3)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
東京学芸大学 国立 東京学芸大学 2015年 第1問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{CO}$をそれぞれ$2:1$に内分する点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$とおくとき,下の問いに答えよ.

(1)線分$\mathrm{BC}$上の点$\mathrm{P}$が$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を含む平面上にあるとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$でとった点$\mathrm{P}$に対して,四角形$\mathrm{DEPF}$の対角線の交点を$\mathrm{Q}$としたとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2015年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$は平面$\mathrm{OBC}$に直交し,
\[ \mathrm{OA}=\sqrt{6},\quad \mathrm{OB}=\mathrm{OC}=\mathrm{BC}=1 \]
であるとする.四面体$\mathrm{OABC}$の内部の点$\mathrm{P}$から,平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{PD}$,平面$\mathrm{OBC}$に下ろした垂線を$\mathrm{PE}$,平面$\mathrm{OAC}$に下ろした垂線を$\mathrm{PF}$,平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{PG}$とする.ここで,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$はそれぞれ平面$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OAC}$,$\mathrm{ABC}$上の点である.$3$つの線分$\mathrm{PD}$,$\mathrm{PE}$,$\mathrm{PF}$の長さは等しく,その長さを$R$とする.辺$\mathrm{BC}$の中点を$\mathrm{H}$とすると,点$\mathrm{E}$は線分$\mathrm{OH}$上にあり,点$\mathrm{G}$は線分$\mathrm{AH}$上にある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次の問に答えよ.

(1)$\overrightarrow{\mathrm{HA}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また線分$\mathrm{HA}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$R$を用いて表せ.
(3)線分$\mathrm{PG}$の長さが$R$であるとき,$R$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$は平面$\mathrm{OBC}$に直交し,
\[ \mathrm{OA}=\sqrt{6},\quad \mathrm{OB}=\mathrm{OC}=\mathrm{BC}=1 \]
であるとする.四面体$\mathrm{OABC}$の内部の点$\mathrm{P}$から,平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{PD}$,平面$\mathrm{OBC}$に下ろした垂線を$\mathrm{PE}$,平面$\mathrm{OAC}$に下ろした垂線を$\mathrm{PF}$,平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{PG}$とする.ここで,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$はそれぞれ平面$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OAC}$,$\mathrm{ABC}$上の点である.$3$つの線分$\mathrm{PD}$,$\mathrm{PE}$,$\mathrm{PF}$の長さは等しく,その長さを$R$とする.辺$\mathrm{BC}$の中点を$\mathrm{H}$とすると,点$\mathrm{E}$は線分$\mathrm{OH}$上にあり,点$\mathrm{G}$は線分$\mathrm{AH}$上にある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次の問に答えよ.

(1)$\overrightarrow{\mathrm{HA}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また線分$\mathrm{HA}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$R$を用いて表せ.
(3)線分$\mathrm{PG}$の長さが$R$であるとき,$R$の値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。