タグ「平面」の検索結果

34ページ目:全1904問中331問~340問を表示)
佐賀大学 国立 佐賀大学 2015年 第3問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
九州工業大学 国立 九州工業大学 2015年 第2問
座標平面上に原点を中心とする半径$1$の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ -1)$,$\mathrm{B}(0,\ -1)$があり,点$\mathrm{A}$を通る傾き$k$の直線$\ell$を考える.直線$\ell$は円$C$と異なる$2$点で交わるものとし,点 $\mathrm{A}$から遠い方の交点を$\mathrm{P}$,近い方の交点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{Q}$の座標をそれぞれ$k$を用いて表せ.
(3)三角形$\mathrm{BPQ}$の面積を$k$を用いて表せ.
(4)三角形$\mathrm{BPQ}$の面積を最大にする$k$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第1問
四面体$\mathrm{OABC}$において,三角形$\mathrm{ABC}$は$1$辺の長さが$1$の正三角形であり,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=2$とする.また,点$\mathrm{C}$を通り平面$\mathrm{OAB}$に垂直な直線上に点$\mathrm{D}$があり,線分$\mathrm{CD}$の中点$\mathrm{H}$は平面$\mathrm{OAB}$に含まれるとする.すなわち,点$\mathrm{D}$は平面$\mathrm{OAB}$に関して,点$\mathrm{C}$と対称な点である.
(図は省略)
$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$および$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.また,$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(3)直線$\mathrm{BH}$と直線$\mathrm{OA}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{BP}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{a}$を求めよ.さらに,$\mathrm{OP}$および$\mathrm{BP}$の長さを求めよ.
(4)$(3)$で定めた点$\mathrm{P}$に対して,四角形$\mathrm{BCPD}$の面積$S$を求めよ.また,四角錐$\mathrm{O}$-$\mathrm{BCPD}$の体積$V$を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ 0,\ 0)$,$\mathrm{C}(0,\ 4,\ 0)$,$\mathrm{D}(0,\ 0,\ 4)$をとり,下図のように線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{OD}$を$3$辺とする立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.辺$\mathrm{DE}$,$\mathrm{BF}$の中点を,それぞれ$\mathrm{M}$,$\mathrm{N}$とする.以下の問いに答えよ.
(図は省略)

(1)ベクトル$\overrightarrow{\mathrm{GM}}$および$\overrightarrow{\mathrm{GN}}$を成分で表せ.
(2)$\angle \mathrm{MGN}=\theta$とする.$\cos \theta$の値を求めよ.
(3)$3$点$\mathrm{G}$,$\mathrm{M}$,$\mathrm{N}$を頂点とする三角形$\mathrm{GMN}$の面積を求めよ.
(4)三角錐$\mathrm{FGMN}$において,三角形$\mathrm{GMN}$を底面としたときの高さを求めよ.
(5)三角形$\mathrm{GMN}$を含む平面と線分$\mathrm{OF}$との交点を$\mathrm{P}$とする.このとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OF}}$を用いて表せ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
徳島大学 国立 徳島大学 2015年 第1問
四面体$\mathrm{OABC}$において$\mathrm{OA}=2$,$\mathrm{OB}=\mathrm{OC}=1$,$\displaystyle \mathrm{BC}=\frac{\sqrt{10}}{2}$,$\angle \mathrm{AOB}=\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{O}$から平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{OH}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{c} \cdot \overrightarrow{a}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第3問
座標平面上の$3$点$\mathrm{A}(0,\ \sqrt{2})$,$\mathrm{B}(2 \sqrt{6},\ \sqrt{2})$,$\mathrm{C}(\sqrt{6},\ 3 \sqrt{2})$に対して,点$\mathrm{P}(p,\ q)$は線分$\mathrm{AP}$,$\mathrm{BP}$の垂直二等分線が点$\mathrm{C}$で交わるという条件を満たす点とする.ただし,$q>\sqrt{2}$である.また,点$\mathrm{A}$から直線$\mathrm{BP}$へ下ろした垂線と点$\mathrm{B}$から直線$\mathrm{AP}$へ下ろした垂線が点$\mathrm{T}(s,\ t)$で交わっているとする.このとき,以下の問に答えよ.

(1)点$\mathrm{P}$の軌跡を求め,図示せよ.
(2)点$\mathrm{T}$の軌跡を求め,図示せよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。