タグ「平面」の検索結果

32ページ目:全1904問中311問~320問を表示)
広島大学 国立 広島大学 2015年 第3問
座標平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とする.点$\mathrm{C}$は$|\overrightarrow{\mathrm{OC}}|=1$,$0^\circ<\angle \mathrm{AOC}<{90}^\circ$,$0^\circ<\angle \mathrm{BOC}<{90}^\circ$を満たすとする.$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=t$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(2)線分$\mathrm{AB}$と線分$\mathrm{OC}$の交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(3)点$\mathrm{C}$から線分$\mathrm{OA}$に引いた垂線と線分$\mathrm{AB}$の交点を$\mathrm{E}$とする.$\mathrm{D}$は$(2)$で定めた点とする.このとき,$\triangle \mathrm{OBD}$と$\triangle \mathrm{CDE}$の面積の和を$t$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2015年 第3問
曲線$C:y=\sin^2 x$について,$C$上の点$\displaystyle (t,\ \sin^2 t) \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における$C$の接線と直線$x=a$との交点を$\mathrm{P}$とする.ただし,$a$は$\displaystyle 0 \leqq a \leqq \frac{\pi}{2}$を満たす定数とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の$y$座標を$f(t)$とおくとき,$f(t)$を求めよ.
(2)関数$f(t)$の増減を調べ,その最大値と最小値を求めよ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$(t,\ \sin^2 t)$における$C$の接線が通るすべての点のうち,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$となるものの範囲を$xy$平面に図示せよ.
金沢大学 国立 金沢大学 2015年 第1問
四面体$\mathrm{OABC}$において,$3$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$はどの$2$つも互いに垂直であり,$h>0$に対して,
\[ |\overrightarrow{\mathrm{OA}}|=1,\quad |\overrightarrow{\mathrm{OB}}|=2,\quad |\overrightarrow{\mathrm{OC}}|=h \]
とする.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面上の点$\mathrm{P}$は,$\overrightarrow{\mathrm{CP}}$が$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$のどちらとも垂直となる点であるとする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}}$とするとき,$\alpha$と$\beta$を$h$を用いて表せ.
(2)直線$\mathrm{OP}$と直線$\mathrm{AB}$が直交していることを示せ.
(3)$\triangle \mathrm{PAB}$は,辺$\mathrm{AB}$を底辺とする二等辺三角形ではないことを示せ.
金沢大学 国立 金沢大学 2015年 第1問
平面上の三角形$\mathrm{ABC}$で,$|\overrightarrow{\mathrm{AB}}|=7$,$|\overrightarrow{\mathrm{BC}}|=5$,$|\overrightarrow{\mathrm{AC}}|=6$となるものを考える.また,三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$は,
\[ \overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}} \quad (s>0) \]
を満たすとする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=\alpha \overrightarrow{\mathrm{AB}}+\beta \overrightarrow{\mathrm{AC}}$とするとき,$\alpha$と$\beta$を$s$を用いて表せ.
(2)$2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\displaystyle \frac{|\overrightarrow{\mathrm{BD}}|}{|\overrightarrow{\mathrm{DC}}|}$と$\displaystyle \frac{|\overrightarrow{\mathrm{AP}}|}{|\overrightarrow{\mathrm{PD}}|}$を$s$を用いて表せ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)三角形$\mathrm{APC}$の面積が$2 \sqrt{6}$となるような$s$の値を求めよ.
金沢大学 国立 金沢大学 2015年 第3問
座標平面上で,$x$座標と$y$座標がともに$0$以上の整数である点を,ここでは格子点とよぶ.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へ,両端点がともに格子点であり長さが$1$の線分を用いて,格子点$(0,\ 0)$から順に最も少ない本数でつなぐ方法を数える.例えば,格子点$(0,\ 0)$から格子点$(3,\ 1)$へつなぐ方法の数は$4$である.次の問いに答えよ.

(1)格子点$(0,\ 0)$から格子点$(4,\ 0)$へつなぐ方法の数と,格子点$(0,\ 0)$から格子点$(2,\ 2)$へつなぐ方法の数を,それぞれ求めよ.
(2)条件$k+\ell=5$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を求めよ.
(3)条件$k+\ell=n (n \geqq 1)$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
(4)条件$k+\ell=n$($k$と$\ell$はともに偶数で,$n \geqq 2$)を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
東京工業大学 国立 東京工業大学 2015年 第3問
$a>0$とする.曲線$y=e^{-x^2}$と$x$軸,$y$軸,および直線$x=a$で囲まれた図形を,$y$軸のまわりに$1$回転してできる回転体を$A$とする.

(1)$A$の体積$V$を求めよ.
(2)点$(t,\ 0) (-a \leqq t \leqq a)$を通り$x$軸と垂直な平面による$A$の切り口の面積を$S(t)$とするとき,不等式
\[ S(t) \leqq \int_{-a}^a e^{-(s^2+t^2)} \, ds \]
を示せ.
(3)不等式
\[ \sqrt{\pi (1-e^{-a^2})} \leqq \int_{-a}^a e^{-x^2} \, dx \]
を示せ.
東京工業大学 国立 東京工業大学 2015年 第4問
$xy$平面上を運動する点$\mathrm{P}$の時刻$t (t>0)$における座標$(x,\ y)$が
\[ x=t^2 \cos t,\quad y=t^2 \sin t \]
で表されている.原点を$\mathrm{O}$とし,時刻$t$における$\mathrm{P}$の速度ベクトルを$\overrightarrow{v}$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\theta (t)$とするとき,極限値$\displaystyle \lim_{t \to \infty} \theta (t)$を求めよ.
(2)$\overrightarrow{v}$が$y$軸に平行になるような$t (t>0)$のうち,最も小さいものを$t_1$,次に小さいものを$t_2$とする.このとき,不等式$t_2-t_1<\pi$を示せ.
岡山大学 国立 岡山大学 2015年 第2問
座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$をとり,$2$つのベクトル$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{CP}}$の内積が$0$になるような点$\mathrm{P}(x,\ y,\ z)$の集合を$S$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)集合$S$は球面であることを示し,その中心$\mathrm{Q}$の座標と半径$r$の値を求めよ.
(2)原点$\mathrm{O}$から最も遠い距離にある$S$上の点の座標を求めよ.
(3)$(1)$で求めた点$\mathrm{Q}$は,平面$\alpha$上にあることを示せ.
(4)$(1)$で求めた点$\mathrm{Q}$を通って平面$\alpha$に垂直な直線を$\ell$とする.球面$S$と直線$\ell$のすべての共有点について,その座標を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.$n=1,\ 2,\ 3,\ \cdots$に対し,座標平面の$3$点
\[ (2n\pi,\ 0),\quad \left( \left(2n+\frac{1}{2} \right) \pi,\ \frac{1}{{\left\{ \left( 2n+\displaystyle\frac{1}{2} \right)\pi \right\}}^a} \right),\quad ((2n+1)\pi,\ 0) \]
を頂点とする三角形の面積を$A_n$とし,
\[ B_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin x}{x^a} \, dx,\qquad C_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin^2 x}{x^a} \, dx \]
とおく.

(1)$n=1,\ 2,\ 3,\ \cdots$に対し,次の不等式が成り立つことを示せ.
\[ \frac{2}{\{(2n+1)\pi\}^a} \leqq B_n \leqq \frac{2}{(2n\pi)^a} \]
(2)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{B_n}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{C_n}$を求めよ.
新潟大学 国立 新潟大学 2015年 第3問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周$C$上の点を$\mathrm{A}(a,\ b)$とし,$f(x)=(x-a)^2+b$とする.点$\mathrm{B}(0,\ -2)$から放物線$y=f(x)$に引いた接線を$\ell_1$,$\ell_2$とし,接点をそれぞれ$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(q,\ f(q))$とする.ただし$p<q$である.放物線$y=f(x)$と$2$直線$\ell_1$,$\ell_2$とで囲まれた部分の面積を$S$とする.次の問いに答えよ.

(1)接線$\ell_1$の方程式と接点$\mathrm{P}$の座標,および接線$\ell_2$の方程式と接点$\mathrm{Q}$の座標を$a,\ b$を用いて表せ.
(2)面積$S$を$b$を用いて表せ.
(3)点$\mathrm{A}$が円周$C$上を動くとき,面積$S$の最大値とそのときの点$\mathrm{A}$の座標$(a,\ b)$を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。