タグ「平面」の検索結果

29ページ目:全1904問中281問~290問を表示)
東京大学 国立 東京大学 2015年 第3問
$a$を正の実数とし,$p$を正の有理数とする.座標平面上の$2$つの曲線$y=ax^p (x>0)$と$y=\log x (x>0)$を考える.この$2$つの曲線の共有点が$1$点のみであるとし,その共有点を$\mathrm{Q}$とする.以下の問いに答えよ.必要であれば,$\displaystyle \lim_{x \to \infty} \frac{x^p}{\log x}=\infty$を証明なしに用いてよい.

(1)$a$および点$\mathrm{Q}$の$x$座標を$p$を用いて表せ.
(2)この$2$つの曲線と$x$軸で囲まれる図形を,$x$軸のまわりに$1$回転してできる立体の体積を$p$を用いて表せ.
(3)$(2)$で得られる立体の体積が$2 \pi$になるときの$p$の値を求めよ.
東京大学 国立 東京大学 2015年 第3問
$\ell$を座標平面上の原点を通り傾きが正の直線とする.さらに,以下の$3$条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$で定まる円$C_1$,$C_2$を考える.

(i) 円$C_1$,$C_2$は$2$つの不等式$x \geqq 0$,$y \geqq 0$で定まる領域に含まれる.
(ii) 円$C_1$,$C_2$は直線$\ell$と同一点で接する.
(iii) 円$C_1$は$x$軸と点$(1,\ 0)$で接し,円$C_2$は$y$軸と接する.

円$C_1$の半径を$r_1$,円$C_2$の半径を$r_2$とする.$8r_1+9r_2$が最小となるような直線$\ell$の方程式と,その最小値を求めよ.
(図は省略)
京都大学 国立 京都大学 2015年 第4問
$xyz$空間の中で,$(0,\ 0,\ 1)$を中心とする半径$1$の球面$S$を考える.点$\mathrm{Q}$が$(0,\ 0,\ 2)$以外の$S$上の点を動くとき,点$\mathrm{Q}$と点$\mathrm{P}(1,\ 0,\ 2)$の$2$点を通る直線$\ell$と平面$z=0$との交点を$\mathrm{R}$とおく.$\mathrm{R}$の動く範囲を求め,図示せよ.
大阪大学 国立 大阪大学 2015年 第3問
平面上に長さ$2$の線分$\mathrm{AB}$を直径とする円$C$がある.$2$点$\mathrm{A}$,$\mathrm{B}$を除く$C$上の点$\mathrm{P}$に対し,$\mathrm{AP}=\mathrm{AQ}$となるように線分$\mathrm{AB}$上の点$\mathrm{Q}$をとる.また,直線$\mathrm{PQ}$と円$C$の交点のうち,$\mathrm{P}$でない方を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{AQR}$の面積を$\theta=\angle \mathrm{PAB}$を用いて表せ.
(2)点$\mathrm{P}$を動かして$\triangle \mathrm{AQR}$の面積が最大になるとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を用いて表せ.
北海道大学 国立 北海道大学 2015年 第3問
空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(-1,\ 1,\ 1)$の定める平面を$\alpha$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.$\alpha$上の点$\mathrm{C}$があり,その$x$座標が正であるとする.ベクトル$\overrightarrow{\mathrm{OC}}$が$\overrightarrow{a}$に垂直で,大きさが$1$であるとする.$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.

(1)$\mathrm{C}$の座標を求めよ.
(2)$\overrightarrow{b}=s \overrightarrow{a}+t \overrightarrow{c}$をみたす実数$s,\ t$を求めよ.
(3)$\alpha$上にない点$\mathrm{P}(x,\ y,\ z)$から$\alpha$に垂線を下ろし,$\alpha$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OH}}=k \overrightarrow{a}+l \overrightarrow{c}$をみたす実数$k,\ l$を$x,\ y,\ z$で表せ.
一橋大学 国立 一橋大学 2015年 第2問
座標平面上の原点を$\mathrm{O}$とする.点$\mathrm{A}(a,\ 0)$,点$\mathrm{B}(0,\ b)$および点$\mathrm{C}$が
\[ \mathrm{OC}=1,\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA} \]
を満たしながら動く.

(1)$s=a^2+b^2,\ t=ab$とする.$s$と$t$の関係を表す等式を求めよ.
(2)$\triangle \mathrm{ABC}$の面積のとりうる値の範囲を求めよ.
一橋大学 国立 一橋大学 2015年 第4問
$xyz$空間において,原点を中心とする$xy$平面上の半径$1$の円周上を点$\mathrm{P}$が動き,点$(0,\ 0,\ \sqrt{3})$を中心とする$xz$平面上の半径$1$の円周上を点$\mathrm{Q}$が動く.

(1)線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
広島大学 国立 広島大学 2015年 第3問
座標空間内に$5$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A} \left(0,\ 0,\ \frac{3}{4} \right),\quad \mathrm{B}\left( \frac{1}{2},\ 0,\ \frac{1}{2} \right),\quad \mathrm{C}(s,\ t,\ 0),\quad \mathrm{D}(0,\ u,\ 0) \]
がある.ただし,$s,\ t,\ u$は実数で,$s>0$,$t>0$,$s+t=1$を満たすとする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面が$y$軸と点$\mathrm{D}$で交わっているとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$x$軸との交点の$x$座標を求めよ.
(2)$u$を$t$を用いて表せ.また,$0<u<1$であることを示せ.
(3)点$(0,\ 1,\ 0)$を$\mathrm{E}$とする.点$\mathrm{D}$が線分$\mathrm{OE}$を$12:1$に内分するとき,$t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
$s,\ t$を$s<t$をみたす実数とする.座標平面上の$3$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(s,\ s^2)$,$\mathrm{C}(t,\ t^2)$が一直線上にあるとする.以下の問に答えよ.

(1)$s$と$t$の間の関係式を求めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}(u,\ v)$とする.$u$と$v$の間の関係式を求めよ.
(3)$s,\ t$が変化するとき,$v$の最小値と,そのときの$u,\ s,\ t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
座標平面上の$2$つの曲線$\displaystyle y=\frac{x-3}{x-4}$,$\displaystyle y=\frac{1}{4}(x-1)(x-3)$をそれぞれ$C_1$,$C_2$とする.以下の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の交点をすべて求めよ.
(2)$2$曲線$C_1$,$C_2$の概形をかき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。