タグ「平面」の検索結果

185ページ目:全1904問中1841問~1850問を表示)
西南学院大学 私立 西南学院大学 2010年 第5問
$xy$平面上の$3$点$(0,\ -13)$,$(1,\ -6)$,$(3,\ 2)$を通る$2$次関数のグラフ$y=f(x)$があり,これと$x$軸で囲まれた部分の中に存在する平行四辺形$\mathrm{ABCD}$を考える.ここで,平行四辺形の辺$\mathrm{AB}$は$x$軸上にあり,点$\mathrm{C}$と点$\mathrm{D}$は$2$次関数のグラフ上にある.ただし,点$\mathrm{A}$の$x$座標は点$\mathrm{B}$の$x$座標より小さく,点$\mathrm{C}$の$x$座標は$4$より大きいものとする.このとき,次の問に答えよ.

(1)上の条件を満たす$f(x)$を求めよ.
(2)点$\mathrm{C}$の$x$座標を$t$とするとき,平行四辺形$\mathrm{ABCD}$の面積$S$を$t$を用いて表せ.
(3)平行四辺形$\mathrm{ABCD}$の面積$S$の最大値を求めよ.
学習院大学 私立 学習院大学 2010年 第3問
平面上で連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
x \geqq 0 \\
y \leqq 16 \\
y \geqq 4x^2 \\
y \geqq -x^2+2x+3
\end{array} \right. \]
\setstretch{1.3}
の表す領域の面積を求めよ.
学習院大学 私立 学習院大学 2010年 第3問
$x,\ y$の動く範囲を$0 \leqq x \leqq 2\pi$,$0 \leqq y \leqq 2\pi$とするとき,不等式
\[ \sin x+\sin y \geqq \cos x+\cos y \]
の表す領域を平面上に図示せよ.
愛知工業大学 私立 愛知工業大学 2010年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2y^2+xy+5x+y+6$を因数分解すると$[ ]$となる.
(2)平面上に半径$1$と半径$2$の円がある.共通接線がちょうど$3$本引けるとき,この$3$本の接線によって囲まれる三角形の面積は$[ ]$である.
(3)$2$つの平面ベクトルを$\overrightarrow{a}=(3,\ -1)$,$\overrightarrow{b}=(0,\ 2)$とする.$s,\ t$が$s+t=3 (0 \leqq s \leqq 3)$をみたすとき,ベクトル$s \overrightarrow{a}+t \overrightarrow{b}$の大きさの最大値は$[ ]$,最小値は$[ ]$である.
(4)$y=\sin^2 x+4 \sin x \cos x+3 \cos^2 x$を$\sin 2x$と$\cos 2x$の式で表すと$y=[ ]$となり,$0 \leqq x \leqq \pi$における$y$の値の範囲は$[ ]$である.
(5)ある粒子を$1$枚で$50 \, \%$遮断できる繊維がある.この繊維を少なくとも$[ ]$枚重ねれば,この粒子を$99 \, \%$以上遮断できる.ただし,$\log_{10}2=0.3010$とする.
(6)$\displaystyle S_n=\frac{\left( \sum_{k=1}^n k \right)^2}{\sum_{k=1}^n k^2}$のとき,$S_3=[ ]$であり,$\displaystyle \lim_{n \to \infty} \frac{S_n}{n}=[ ]$である.
愛知工業大学 私立 愛知工業大学 2010年 第3問
$f(x)=8x-x^2$とする.

(1)$\displaystyle \frac{f(4)-f(2)}{2}=f^\prime(c)$をみたす$c$を求めよ.
(2)$xy$平面において,$(1)$で求めた$c$について,点$(c,\ f(c))$における曲線$y=f(x)$の接線,曲線$y=f(x)$および$y$軸で囲まれた部分の面積を求めよ.
中京大学 私立 中京大学 2010年 第1問
次の各問に答えよ.

(1)放物線$y=x^2+10(1-a)x-20a+7$の頂点の$y$座標が$-9$になるように定数$a$の値を求め,そのときのグラフを$xy$平面上に図示せよ.
(2)放物線$y=-2x^2+4(b+3)x-2b^2-25b$の頂点と$(1)$で図示した放物線の頂点の$y$座標の差が$\displaystyle \frac{96}{5}$であるとき,定数$b$の値を求めよ.
愛知工業大学 私立 愛知工業大学 2010年 第4問
次の$[ ]$を適当に補え.

(1)$x^2-2y^2+xy+5x+y+6$を因数分解すると$[ ]$となる.
(2)連立不等式$\left\{ \begin{array}{l}
x^2-2x-3<0 \\
x^2+3x+1>0
\end{array} \right.$をみたす$x$の範囲は$[ ]$である.
(3)$x$の$2$次方程式$x^2-2ax-a^2+1=0$が実数解をもたないような実数$a$の範囲は$[ ]$である.
(4)初速$v \; \mathrm{m} \, / \, \text{秒}$で地上から真上に投げたボールの$x$秒後の高さ$y \; \mathrm{m}$は,$y=vx-5x^2$で表されるものとする.地上から真上に投げたボールが$3$秒後に最高点に達したとすると,ボールの初速は$[ ] \; \mathrm{m} \, / \, \text{秒}$であり,最高点の高さは$[ ] \; \mathrm{m}$である.
(5)$4$桁の自然数で各位の数字がすべて異なるものは全部で$[ ]$個あり,そのうち,$1234$より大きいものは全部で$[ ]$個である.
(6)平面上に半径$1$と半径$2$の円がある.共通接線がちょうど$3$本引けるとき,この$3$本の接線によって囲まれる三角形の面積は$[ ]$である.
(7)$\mathrm{A}$君は$3$校の大学を受験し,合格する確率はすべて等しく$\displaystyle \frac{1}{2}$であるという.$\mathrm{A}$君が少なくとも$1$校に合格する確率は$[ ]$である.また,合格した大学には$1$校につき$30$万円の入学金を支払うとすると,支払う入学金の期待値は$[ ]$円である.
獨協医科大学 私立 獨協医科大学 2010年 第3問
$1$辺の長さが$1$である正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{PQ}}=-\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{b}$,$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{\sqrt{[ ]}}{[ ]}$

$\displaystyle \overrightarrow{\mathrm{PR}}=-\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{c}$,$\displaystyle |\overrightarrow{\mathrm{PR}}|=\frac{\sqrt{[ ]}}{[ ]}$

である.
(2)$\triangle \mathrm{PQR}$の面積は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.

(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,線分$\mathrm{OG}$と平面$\mathrm{PQR}$の交点を$\mathrm{D}$とする.このとき,$\displaystyle \mathrm{OG}:\mathrm{OD}=1:\frac{[ ]}{[ ]}$である.
獨協医科大学 私立 獨協医科大学 2010年 第4問
原点を$\mathrm{O}$とする座標平面上の動点$\mathrm{P}$の位置ベクトル$\overrightarrow{\mathrm{OP}}=(x,\ y)$が,時刻$t$の関数として,$x=e^{-2t} \cos 2\pi t$,$y=e^{-2t} \sin 2\pi t$で表されている.

(1)点$\mathrm{P}$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$の大きさは,$|\overrightarrow{v}|=[ ] \sqrt{[ ]+\pi^2}e^{-2t}$である.
(2)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\alpha$とするとき,$\displaystyle \cos \alpha=\frac{[ ]}{\sqrt{[ ]+\pi^2}}$であり,これは時刻$t$によらない一定値である.
(3)$n$を自然数として,$t=n-1$から$t=n$までの間に点$\mathrm{P}$が動く道のり$S_n$は,
\[ S_n=\sqrt{[ ]+\pi^2} \left( e^{[ ]}-[ ] \right) e^{-2n} \]
である.また,$\displaystyle \sum_{n=1}^{\infty}S_n=\sqrt{[ ]+\pi^2}$である.
(4)$t=0$から$\displaystyle t=\frac{1}{4}$までの間に点$\mathrm{P}$がえがく曲線と,$x$軸,$y$軸とで囲まれる図形の面積$I$は,$\displaystyle I=\int_a^b y \, dx=\int_{\frac{1}{4}}^0 y \frac{dx}{dt} \, dt$で求められる.このとき$a=[ ]$,$b=[ ]$で,$\displaystyle I=\int_0^{\frac{1}{4}} e^{-4t} \{ \sin [$*$] \pi t+\pi (1-\cos [$*$] \pi t) \} \, dt$である.
日本女子大学 私立 日本女子大学 2010年 第1問
行列$P$で表される$1$次変換によって平面上の点$(-2,\ 1)$と点$(1,\ 1)$が,それぞれ点$(-1,\ 3)$,点$(2,\ 6)$に移る.

(1)$P$を求めよ.
(2)実数$a,\ b,\ c,\ d$に対して行列
\[ A=\left( \begin{array}{rr}
a & b \\
-5 & 8
\end{array} \right),\quad B=\left( \begin{array}{cc}
c & 0 \\
0 & d
\end{array} \right) \]

\[ AP=PB \]
を満たしているとする.このとき,$a,\ b,\ c,\ d$の値を求めよ.
(3)$P$が逆行列$P^{-1}$をもつことを示し,$(PBP^{-1})^2$を求めよ.
(4)自然数$n$に対して$A^n$を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。