タグ「平面」の検索結果

182ページ目:全1904問中1811問~1820問を表示)
宮城教育大学 国立 宮城教育大学 2010年 第1問
平面上に大きさが1のベクトル$\overrightarrow{a}$と大きさが2のベクトル$\overrightarrow{b}$があり,そのなす角が$60^\circ$である.いま,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=k \overrightarrow{a}+\overrightarrow{b} \ (k \neq -1)$となる$\triangle \mathrm{ABC}$がある.$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{CM}$の交点を$\mathrm{P}$とする.また,点$\mathrm{Q}$は2点$\mathrm{A},\ \mathrm{C}$を通る直線上にあり,$\overrightarrow{\mathrm{PQ}} \perp \overrightarrow{\mathrm{AB}}$をみたす.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{AQ}}=l \overrightarrow{\mathrm{AC}}$をみたす$l$を$k$を用いて表せ.
(3)点$\mathrm{Q}$が辺$\mathrm{AC}$上にあるとき,$k$の値の範囲を求めよ.
九州工業大学 国立 九州工業大学 2010年 第4問
右図のように平面上に正六角形$\mathrm{ABCDEF}$がある.時刻$n$ \\
$(n=1,\ 2,\ 3,\ \cdots)$において動点$\mathrm{P}$は正六角形の$6$つの頂点 \\
のいずれかにあり,時刻$1$では頂点$\mathrm{A}$にあるものとする. \\
時刻$n+1$には,時刻$n$のときにあった頂点の隣り合う$2$つの \\
頂点のいずれかに移動する.どちらの頂点に移動するかは \\
同様に確からしいものとする.時刻$n$において,動点$\mathrm{P}$が頂点 \\
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$にある確率をそれぞれ \\
$a_n,\ b_n,\ c_n,\ d_n,\ e_n,\ f_n$とする.以下の問いに答えよ.
\img{678_3150_2010_1}{60}


(1)$a_2,\ b_2,\ c_2,\ d_2,\ e_2,\ f_2$を求めよ.
(2)$a_3,\ b_3,\ c_3,\ d_3,\ e_3,\ f_3$を求めよ.
(3)$n$が偶数のとき,$b_n+d_n+f_n$を求めよ.
(4)すべての時刻$n$に対して,$b_n=f_n$および$c_n=e_n$が同時に成立することを数学的帰納法を用いて示せ.
(5)$m$を$1$以上の整数とするとき,$d_{2m}$を$m$を用いて表せ.また,$\displaystyle \lim_{m \to \infty}d_{2m}$を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{DE}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{X}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OX}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$t$を用いて表せ.
(2)点$\mathrm{P}$は線分$\mathrm{DE}$上にあり,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{DE}}$をみたす.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)(2)で定まる点$\mathrm{P}$について,直線$\mathrm{OP}$と3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$の定める平面との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2010年 第3問
座標平面上に点$\mathrm{B}_n(b_n,\ 0)$,$\displaystyle \mathrm{C}_n \left( \frac{b_n+b_{n+1}}{2},\ \frac{1}{2^{n-1}} \right) \ (n=1,\ 2,\ 3,\ \cdots)$がある.ただし,$b_n \leqq b_{n+1}$である.$2$点$\mathrm{B}_n$,$\mathrm{B}_{n+1}$間の距離を$\mathrm{B}_n \mathrm{B}_{n+1}$で表すとき,$\displaystyle \mathrm{B}_{n+1} \mathrm{B}_{n+2}=\frac{1}{2} \mathrm{B}_n \mathrm{B}_{n+1}$が成立している.$b_1=0,\ b_2=1$のとき,次の問いに答えよ.

(1)$d_n=\mathrm{B}_n \mathrm{B}_{n+1}$とおくとき,$d_n$を$n$を用いて表せ.
(2)$b_n$を$n$を用いて表せ.
(3)点$\mathrm{C}_n \ (n=1,\ 2,\ 3,\ \cdots)$は同一直線上にあることを示せ.
(4)$\log_{10}2=0.3010$として,$b_n<1.99$をみたす最大の自然数$n$を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第5問
次の問いに答えよ.

(1)$1$から$9$までの整数がひとつずつ書かれた$9$個の玉が入っている袋の中から玉を$3$個取り出す.取り出した玉に書かれた整数の和が$12$以上となる確率を求めよ.
(2)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(3)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して$|\overrightarrow{\mathrm{AB}}|=1$,$|\overrightarrow{\mathrm{AC}}|=5$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=3$である.$|\overrightarrow{\mathrm{BC}}|$を求めよ.ただし,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の内積とする.
山梨大学 国立 山梨大学 2010年 第3問
$xy$平面上に$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 1)$がある.次の方法により,$\mathrm{A}_n(x_n,\ 0)$,$\mathrm{B}_n(0,\ y_n) \ (n=1,\ 2,\ 3,\ \cdots)$を定める.$\mathrm{A}_1$を$\mathrm{A}_1(6,\ 0)$とする.直線$\mathrm{A}_1 \mathrm{P}$と$y$軸との交点を$\mathrm{B}_1(0,\ y_1)$とし,直線$\mathrm{B}_1 \mathrm{Q}$と$x$軸との交点を$\mathrm{A}_2(x_2,\ 0)$とする.同様に直線$\mathrm{A}_2 \mathrm{P}$と$y$軸との交点を$\mathrm{B}_2(0,\ y_2)$とし,直線$\mathrm{B}_2 \mathrm{Q}$と$x$軸との交点を$\mathrm{A}_3(x_3,\ 0)$とする.以下,これを繰り返す.

(1)直線$\mathrm{A}_n \mathrm{P}$の方程式を$x_n$を用いて表せ.また,直線$\mathrm{B}_n \mathrm{Q}$の方程式を$y_n$を用いて表せ.
(2)$x_{n+1}$を$x_n$を用いて表せ.
(3)$\displaystyle z_n=\frac{1}{x_n}$とおくとき,$z_n$を求めることにより,$x_n$を$n$の式で表せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2010年 第2問
図に示す点$\mathrm{O}$を原点とする直交座標空間に点$\mathrm{P}(1,\ 0,\ 0)$をとる.点$\mathrm{P}$を,$xy$平面内で原点$\mathrm{O}$を中心として図に示す矢印の方向に角度$\theta$回転させた位置に点$\mathrm{Q}$をとる.さらに,点$\mathrm{Q}$および$z$軸を含む平面内で,点$\mathrm{O}$を中心として点$\mathrm{Q}$を矢印の方向に角度$\theta$回転させた位置に点$\mathrm{R}$をとる.ただし,角度$\theta$の範囲は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{R}$の座標$(x_\mathrm{R},\ y_\mathrm{R},\ z_\mathrm{R})$を,角度$\theta$を用いて表せ.
(2)$\displaystyle \angle \mathrm{ORP}=\frac{\pi}{3}$であるとき,角度$\theta$の値を求めよ.
(3)点$\mathrm{R}$から平面$x+y=0$に下ろした垂線の長さ$l$を,角度$\theta$の関数で表せ.
(4)(3)で求めた垂線の長さ$l$が最大となるときの角度$\theta$の値とそのときの$l$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2010年 第1問
座標平面上の$2$直線$\ell:x \sin \theta-y \cos \theta=0$(ただし$0^\circ \leqq \theta<180^\circ$),$\displaystyle m:y=\frac{1}{\sqrt{3}}x$を考える.$\ell$,$m$に関する対称移動をそれぞれ$f,\ g$とする.

(1)対称移動$f$を表す行列を求めよ.
(2)移動の合成$f \circ g$が原点のまわりの回転移動となることを示せ.また,その回転角を$\theta$を用いて表せ.
(3)移動の合成$f \circ g$を表す行列と$g \circ f$を表す行列が一致するときの$\theta$を求めよ.ただし,$f$と$g$は異なる移動とする.
東京海洋大学 国立 東京海洋大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上で曲線$C:y=x |x-k|$(ただし$k$は正の定数)と直線$\ell:y=mx$が原点以外に$2$点$\mathrm{P}(\alpha,\ m \alpha)$,$\mathrm{Q}(\beta,\ m \beta)$で交わっている.ただし$0<\alpha<\beta$とする.

(1)$m$の範囲を$k$で表せ.
(2)$C$と$\ell$で囲まれた$2$つの図形の面積の和$S$を$m$と$k$で表せ.
(3)$S$が最小となるときの$m$を$k$で表せ.
(4)$(3)$のとき,$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}=\sqrt{2}$であることを示せ.
早稲田大学 私立 早稲田大学 2010年 第2問
$x$-$y$平面上の$3$点を
\[ \mathrm{A}(0,\ 9),\quad \mathrm{B}(-3,\ 0),\quad \mathrm{C}(2,\ 0) \]
とし,原点を$\mathrm{O}$とする.このとき,次の各問に答えよ.空欄にあてはまる最もかんたんな数値を解答欄に記入せよ.

(1)$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{D}$とし,$\mathrm{BD}$が$y$軸と交わる点を$\mathrm{E}$とするとき,$\mathrm{OE}:\mathrm{EA}=[ ]:[ ]$である.
(2)$\mathrm{CE}$を延長して,$\mathrm{AB}$と交わる点を$\mathrm{F}$とするとき,$\triangle \mathrm{AFC}$の面積は,$\triangle \mathrm{ABC}$の面積の$\displaystyle\frac{[ ]}{[ ]}$である.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。