タグ「平面」の検索結果

180ページ目:全1904問中1791問~1800問を表示)
大阪教育大学 国立 大阪教育大学 2010年 第3問
座標平面上で,行列$\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$で表される移動を$f$とする.0でないすべての実数$t$に対して,点P$\displaystyle \left( t+\frac{1}{t},\ t-\frac{1}{t} \right)$が$f$により曲線$x^2-y^2=4$上に移るとき,次の問に答えよ.

(1)$a,\ b,\ c,\ d$は,
\[ (a+b)^2=(c+d)^2,\quad (a-b)^2=(c-d)^2,\quad (a^2-c^2)+(d^2-b^2)=2 \]
を満たすことを示せ.
(2)$a,\ b,\ c,\ d$は,
\[ a^2-c^2=d^2-b^2=1,\quad ab=cd \]
を満たすことを示せ.
(3)$\biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr)=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr) \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr)$とするとき,
\[ X^2-Y^2=x^2-y^2 \]
となることを示せ.
(4)点Qが直線$y=x$上にあるとき,$f(Q)$は直線$y=x$または直線$y=-x$上にあることを示せ.
新潟大学 国立 新潟大学 2010年 第5問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)(2)で2次関数がただ一通りに定まるとき,その2次関数の最大値を$X$とし,そうでないとき$X=0$とする.このとき,$X$の期待値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
新潟大学 国立 新潟大学 2010年 第4問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)O,P,Qが同一直線上にあるとき$X=1$,また,O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき$X=2$,そのどちらでもないとき$X=0$とする.このとき,$X$の期待値を求めよ.
東京農工大学 国立 東京農工大学 2010年 第3問
座標平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2 \cos t,\quad y=\sqrt{3} \sin t \]
で与えられているとする.このとき,次の問いに答えよ.

(1)時刻$t$における点Pの速度$\overrightarrow{v}$と速さ$|\overrightarrow{v}|$を求めよ.
(2)$\displaystyle f(t)=-2\cos t+\frac{d}{dt}|\overrightarrow{v}|^2$とおく.$0 \leqq t \leqq 2\pi$における$f(t)$の最大値,最小値を求め,そのときの$t$の値を求めよ.
(3)(2)の関数$f(t)$について定積分$\displaystyle I=\int_0^{\frac{\pi}{2}} \frac{f(t)}{|\overrightarrow{v}|^2} \, dt$を求めよ.
東京農工大学 国立 東京農工大学 2010年 第4問
$xy$平面上に
\[ |ye^{2x|-6e^{x}-8} =-(e^x-2)(e^x-4) \]
で定まる曲線がある.この曲線によって囲まれる図形の面積$K$を求めよ.ただし,$e$は自然対数の底である.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点$\mathrm{C} \displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点$\mathrm{N}(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,$\mathrm{O}$は原点を表すものとする.

(1)$x$軸上に点$\mathrm{P}(x,\ 0)$をとり,直線$\mathrm{NP}$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に$2$点$\mathrm{P}_1(x_1,\ 0)$,$\mathrm{P}_2(x_2,\ 0)$をとる.直線$\mathrm{NP}_1$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_1$とし,直線$\mathrm{NP}_2$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_2$とする.このとき,$x_1 x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
室蘭工業大学 国立 室蘭工業大学 2010年 第4問
$s,\ t$を正の実数とする.平面上の3点A,B,Cは同一線上にないものとし,さらに平面上の2点P,Qを$\displaystyle \overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}},\ \overrightarrow{\mathrm{BQ}}=\frac{t}{s+t} \overrightarrow{\mathrm{BC}}$で定める.

(1)$\overrightarrow{\mathrm{AQ}}$を$s,\ t,\ \overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角が$60^\circ$で$|\overrightarrow{\mathrm{AC}}|=2 |\overrightarrow{\mathrm{AB}}|$であるとする.$\overrightarrow{\mathrm{AP}} \perp \overrightarrow{\mathrm{CP}}$かつ$|\overrightarrow{\mathrm{AP}}|=5t |\overrightarrow{\mathrm{AQ}}|$であるとき,$s,\ t$の値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。