タグ「平面」の検索結果

179ページ目:全1904問中1781問~1790問を表示)
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第3問
次の問いに答えよ.

(1)座標空間内の点A$(0,\ 1,\ 0)$,B$(0,\ -1,\ 0)$に対して,ABCDが正四面体となるような$xy$平面の$x>0$の部分にある点Cと空間内の$z>0$の部分にある点Dの座標をそれぞれ求めよ.
(2)$\triangle$ABCの重心をEとする.線分DEを$3:1$に内分する点Gの座標を求めよ.
(3)$\angle \text{AGD}=\alpha$とするとき,$\cos \alpha$の値を求めよ.
(4)$\triangle$AGDの面積を求めよ.
電気通信大学 国立 電気通信大学 2010年 第2問
座標平面上を運動する動点P$(x,\ y)$が時刻$t$の関数として
\[ x=t \cos \alpha,\quad y=t \sin \alpha-t^2 \]
で与えられているとする.ただし,$\alpha$は$0 \leqq \alpha < 2\pi$を満たす定数とする.直線$y=x$を$\ell$とするとき,以下の問いに答えよ.

(1)時刻$t=0$における動点Pの速度$\overrightarrow{v}$とその大きさ$|\overrightarrow{v}|$を求めよ.
(2)Pが直線$\ell$上の点を通る時刻$t$をすべて求めよ.
(3)正の時刻においてPが$\ell$上の点を通るための$\alpha$の範囲を求めよ.

以下では,$\alpha$は(3)で求めた範囲にあるとする.

\mon[(4)] 正の時刻においてPが通る$\ell$上の点の$x$座標を求めよ.
\mon[(5)] (4)で求めた$\ell$上の点の$x$座標を$f(\alpha)$とし,$\alpha$を(3)で求めた範囲で変化させる.$f(\alpha)$の最大値,最小値を求め,それらを与える$\alpha$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第6問
座標平面上に,点$(0,\ 1)$を中心とする半径$1$の円と点$\mathrm{P}(0,\ h) \ (0<h<2)$がある.点$\mathrm{P}$を通る直線$y=h$と円との交点で第$1$象限にあるものを$\mathrm{Q}$とする.曲線$C:y=\alpha x^2$は点$\mathrm{Q}$を通るとし,$y$軸と曲線$C$および線分$\mathrm{PQ}$で囲まれた部分を図形$\mathrm{A}$とする.次の問いに答えよ.

(1)$\alpha$を$h$を用いて表せ.
(2)図形$\mathrm{A}$の面積$S$を$h$の式で表し,$S$の最大値を求めよ.
(3)図形$\mathrm{A}$を$y$軸の周りに$1$回転してできる立体の体積$V$を$h$の式で表し,$V$の最大値を求めよ.
(4)$S,\ V$は,それぞれ(2),(3)で求めたものとする.$\displaystyle X=\frac{V}{2\pi S}$とおくとき,$X$の最大値を求めよ.
茨城大学 国立 茨城大学 2010年 第3問
点$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$がある.このとき,以下の各問に答えよ.

(1)実数$s,\ t$によって,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$で定められる点$\mathrm{P}$を考える.$s,\ t$が$s+2t \leqq 2$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(2)実数$u$によって,$\overrightarrow{\mathrm{OQ}}=(1-u)\overrightarrow{\mathrm{QA}}+2u\overrightarrow{\mathrm{QB}}$で定められる点$\mathrm{Q}$を考える.$u$が$0 \leqq u \leqq 1$を満たしながら動くとき,点$\mathrm{Q}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(3)(1)で得られた図形が,(2)で得られた図形によって$2$つの図形に分割される.この$2$つの図形の面積をそれぞれ$S,\ T (S \leqq T)$とおくとき,$\displaystyle \frac{S}{T}$の値を求めよ.
秋田大学 国立 秋田大学 2010年 第3問
$xy$平面上の放物線$C:y=x^2-3x$と,点P$(1,\ -6)$に対して,次の問いに答えよ.

(1)Pを通って放物線$C$に接する直線の方程式を求めよ.
(2)放物線$C$と(1)の直線との接点のうち$x$座標が負のものをQ,正のものをRとする.Sは直線QR上にありQと異なる点とする.Sの$x$座標を$t$とし,P,Q,Sの3点を通る円の方程式を$x^2+y^2+lx+my+n=0$とするとき,$l,\ m,\ n$をそれぞれ$t$の式で表せ.
(3)(2)の円の中心の軌跡を求めよ.さらに,(2)の円の半径が最小となる$t$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第3問
座標平面上に,点$\mathrm{P}(p,\ q)$を中心とする楕円がある.長軸,短軸がそれぞれ$x$軸,$y$軸に平行であり,それぞれの長さは$4,\ 2$である.このとき,以下の問に答えよ.

(1)この楕円の方程式を求めよ.
(2)原点から,この楕円に異なる$2$本の接線が引けるような,点$\mathrm{P}(p,\ q)$の存在範囲を求めて,図示せよ.
(3)さらに,原点から,この楕円に$2$本の直交する接線が引けるような,点$\mathrm{P}(p,\ q)$の存在範囲を求めて,図示せよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第4問
座標平面上の原点O$(0,\ 0)$,点A$(1,\ 0)$,点B$(1,\ 1)$,点C$(0,\ 1)$および点P$(a,\ b)$に対して,点Pを原点のまわりに$90^\circ$回転した点をQ,点Qを点Aのまわりに$90^\circ$回転した点をR,点Rを点Bのまわりに$90^\circ$回転した点をS,また点Pを点Cのまわりに$-90^\circ$回転した点をUとする.このとき,以下の問に答えよ.

(1)点Rの座標を求めよ.
(2)点Uの座標を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{US}}$は$a,\ b$に無関係であることを示せ.
(4)3点B,R,Uが一直線上にあるための必要十分条件を求めよ.ただし,2点あるいは3点が重なっている場合も,3点は一直線上にあるものとする.
新潟大学 国立 新潟大学 2010年 第2問
座標平面上の放物線$y=(x+1)(x-3)$を$C$とする.$x$座標が$p,\ q$である$C$上の点P,Qにおける$C$の2つの接線が点A$(a,\ -7)$で交わり,2点P,Qを通る直線の傾きは2である.ただし,$p<q$とする.このとき,次の問いに答えよ.

(1)$a$の値と点Pと点Qの座標をそれぞれ求めよ.
(2)$C$および3つの直線$x=p,\ x=q,\ y=-7$で囲まれた部分の面積を求めよ.
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。