タグ「平面」の検索結果

171ページ目:全1904問中1701問~1710問を表示)
千葉大学 国立 千葉大学 2010年 第5問
放物線$y=x^2$と直線$y=ax+b$によって囲まれる領域を
\[ D=\{(x,\ y) \; | \; x^2 \leqq y \leqq ax+b \} \]
とし,$D$の面積が$\displaystyle \frac{9}{2}$であるとする.座標平面上で,$x$座標,$y$座標が共に整数である点を格子点と呼ぶ.

(1)$a=0$のとき,$D$に含まれる格子点の個数を求めよ.
(2)$a,\ b$が共に整数であるとき,$D$に含まれる格子点の個数は,$a,\ b$の値によらず一定であることを示せ.
名古屋大学 国立 名古屋大学 2010年 第4問
$xy$平面上で$x$座標と$y$座標がともに整数である点を格子点と呼ぶ.

(1)$\displaystyle y=\frac{1}{3}x^2+\frac{1}{2}x$のグラフ上に無限個の格子点が存在することを示せ.
(2)$a,\ b$は実数で$a \neq 0$とする.$y=ax^2+bx$のグラフ上に,点$(0,\ 0)$以外に格子点が2つ存在すれば,無限個存在することを示せ.
名古屋大学 国立 名古屋大学 2010年 第1問
$xy$平面上の長方形ABCDが次の条件(a),(b),(c)を満たしているとする.

\mon[(a)] 対角線ACとBDの交点は原点Oに一致する.
\mon[(b)] 直線ABの傾きは2である.
\mon[(c)] Aの$y$座標は,B,C,Dの$y$座標より大きい.

このとき,$a>0,\ b>0$として,辺ABの長さを$2\sqrt{5}a$,BCの長さを$2\sqrt{5}b$とおく.

(1)A,B,C,Dの座標を$a,\ b$で表せ.
(2)長方形ABCDが領域$x^2+(y-5)^2 \leqq 100$に含まれるための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
信州大学 国立 信州大学 2010年 第1問
次の問いに答えよ.

(1)2次方程式$x^2 + (2a-1)x+a^2-3a-4 = 0$が少なくとも1つ正の解をもつような実数の定数$a$の値の範囲を求めよ.
(2)不等式$|2 \sin (x+y)| \geqq 1$の表す点$(x,\ y)$の領域を,$0 \leqq x \leqq \pi,\ 0 \leqq y \leqq \pi$の範囲で図示せよ.
(3)座標平面上に3点A$(2,\ 5)$,B$(1,\ 3)$,P$_1(5,\ 1)$をとる.まず,点P$_1$と点Aの中点をQ$_1$,点Q$_1$と点Bの中点をP$_2$とする.次に,点 P$_2$と点Aの中点をQ$_2$,点Q$_2$と点Bの中点をP$_3$とする.以下同様に繰り返し,点P$_n$と点Aの中点をQ$_n$,点Q$_n$と点Bの中点をP$_{n+1} \ (n =1,\ 2,\ 3,\ \cdots)$とする.点P$_n$の$x$座標を$a_n$とするとき,$a_n$を$n$の式で表し,$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
東京大学 国立 東京大学 2010年 第6問
四面体$\mathrm{OABC}$において,$4$つの面はすべて合同であり,$\mathrm{OA}=3$,$\mathrm{OB}=\sqrt{7}$,$\mathrm{AB}=2$であるとする.また,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$L$とする.

(1)点$\mathrm{C}$から平面$L$におろした垂線の足を$\mathrm{H}$とおく.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$0<t<1$をみたす実数$t$に対して,線分$\mathrm{OA}$,$\mathrm{OB}$各々を$t:1-t$に内分する点をそれぞれ$\mathrm{P}_t$,$\mathrm{Q}_t$とおく.$2$点$\mathrm{P}_t$,$\mathrm{Q}_t$を通り,平面$L$に垂直な平面を$M$とするとき,平面$M$による四面体$\mathrm{OABC}$の切り口の面積$S(t)$を求めよ.
(3)$t$が$0<t<1$の範囲を動くとき,$S(t)$の最大値を求めよ.
東京大学 国立 東京大学 2010年 第1問
Oを原点とする座標平面上に点A$(-3,\ 0)$をとり,
$0^\circ<\theta<120^\circ$の範囲にある$\theta$に対して,次の条件(i),(ii)をみたす2点B,Cを考える.

\mon[(i)] Bは$y>0$の部分にあり,$\text{OB}=2$かつ$\angle \text{AOB}=180^\circ-\theta$である.
\mon[(ii)] Cは$y<0$の部分にあり,$\text{OC}=1$かつ$\angle \text{BOC}=120^\circ$である.ただし$\triangle \text{ABC}$はOを含むものとする.

\quad 次の問(1),(2)に答えよ.

(1)$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積が等しいとき,$\theta$の値を求めよ.
(2)$\theta$を$0^\circ<\theta<120^\circ$の範囲で動かすとき,$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積の和の最大値と,そのときの$\sin \theta$の値を求めよ.
信州大学 国立 信州大学 2010年 第2問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は零行列ではなく,$A^2$が零行列となるとする.次の問に答えよ.

(1)$a+d=ad-bc=0$を示せ.
(2)行列$A$が表す一次変換によって,座標平面上の原点と任意の点P,Qは同一直線上に移ることを示せ.
信州大学 国立 信州大学 2010年 第2問
平面上に4点O,A,B,Cがあり,ベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$は次の条件を満たしている.
\begin{eqnarray}
& & |\overrightarrow{\mathrm{OA}}| = 1,\ |\overrightarrow{\mathrm{OB}}| = \sqrt{2},\ |\overrightarrow{\mathrm{OC}}| = \sqrt{3} \nonumber \\
& & \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{0}} \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}}$であることを示せ.
(2)AからBCに下ろした垂線とBCの交点をHとする.AHの長さを求めよ.
岩手大学 国立 岩手大学 2010年 第5問
点$\mathrm{O}$を原点とする座標平面上の点$\mathrm{P}_n \ (n=1,\ 2,\ 3,\ \cdots)$の座標を$(x_n,\ y_n)$とする.行列$\left( \begin{array}{cc}
-1 & 2 \\
-1 & 1
\end{array} \right)$で表される移動により,点$\mathrm{P}_n$が点$\mathrm{P}_{n+1}$に移るとき,次の問いに答えよ.

(1)点$\mathrm{P}_{n+1}$の座標を,$x_n,\ y_n$を用いて表せ.
(2)$(x_1,\ y_1)=(2,\ 1)$とする.すべての$n=1,\ 2,\ 3,\ \cdots$に対して,
\[ (x_n,\ y_n) = \left(2\sin \frac{n\pi}{2},\ \sin \frac{n\pi}{2}+\cos \frac{n\pi}{2} \right) \]
が成り立つことを,数学的帰納法を用いて証明せよ.
和歌山大学 国立 和歌山大学 2010年 第2問
$xy$平面上を原点$(0,\ 0)$から出発して動く点Pがある.1個のさいころを投げ,$1,\ 2$のいずれかの目が出れば点Pを$x$軸の正の方向に1動かし,$3,\ 4,\ 5,\ 6$のいずれかの目が出れば点Pを$y$軸の正の方向に1動かす.これを点Pの$x$座標,$y$座標のいずれか一方が3になるまでくり返すことを操作Aとする.このとき,次の問いに答えよ.

(1)操作Aによって点Pが点$(3,\ 0),\ (3,\ 1),\ (3,\ 2)$に到達する経路はそれぞれ何通りあるか.
(2)操作Aによって点Pの$x$座標が3になる確率を求めよ.
(3)操作Aによって点Pが動く経路の長さの期待値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。