タグ「平面」の検索結果

168ページ目:全1904問中1671問~1680問を表示)
神戸大学 国立 神戸大学 2010年 第2問
空間内に4点O,A,B,Cがあり,
\[ \text{OA} = 3,\ \text{OB} = \text{OC} = 4,\ \angle \text{BOC} = \angle \text{COA} = \angle \text{AOB} = \frac{\pi}{3} \]
であるとする.3点A,B,Cを通る平面に垂線OHをおろす.このとき,以下の問に答えよ.

(1)$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とし,$\overrightarrow{\mathrm{OH}}=r\overrightarrow{a}+s\overrightarrow{b}+t\overrightarrow{c}$と表すとき,$r,\ s,\ t$を求めよ.
(2)直線CHと直線ABの交点をDとするとき,長さの比$\text{CH}:\text{HD},\ \text{AD}:\text{DB}$をそれぞれ求めよ
神戸大学 国立 神戸大学 2010年 第5問
座標平面において,点P$_n(a_n,\ b_n) \ (n \geqq 1)$を
\begin{eqnarray}
\left(
\begin{array}{c}
a_1 \\
b_1
\end{array}
\right) &=& \left(
\begin{array}{c}
1 \\
0
\end{array}
\right) \nonumber \\
\left(
\begin{array}{c}
a_n \\
b_n
\end{array}
\right) &=& \frac{1}{2} \left(
\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}
\right) \left(
\begin{array}{c}
a_{n-1} \\
b_{n-1}
\end{array}
\right) \quad (n \geqq 2) \nonumber
\end{eqnarray}
で定める.このとき,以下の問に答えよ.

(1)$a_n,\ b_n$を$n$と$\theta$を用いて表せ.
(2)$\displaystyle \theta=\frac{\pi}{3}$のとき,自然数$n$に対して,線分P$_n$P$_{n+1}$の長さ$l_n$を求めよ.
(3)(2)で求めた$l_n$に対して,$\displaystyle \sum_{n=1}^\infty l_n$を求めよ.
大阪大学 国立 大阪大学 2010年 第1問
曲線$C : y = -x^2-1$を考える.

(1)$t$が実数全体を動くとき,曲線$C$上の点$(t,\ -t^2-1)$を頂点とする放物線
\[ y =\frac{3}{4}(x-t)^2-t^2-1 \]
が通過する領域を$xy$平面上に図示せよ.
(2)$D$を(1)で求めた領域の境界とする.$D$が$x$軸の正の部分と交わる点を$(a,\ 0)$とし,$x = a$での$C$の接線を$\ell$とする.$D$と$\ell$で囲まれた部分の面積を求めよ.
大阪大学 国立 大阪大学 2010年 第3問
次の問いに答えよ.

(1)不等式
\[ (|x|-2)^2+(|y|-2)^2 \leqq 1 \]
の表す領域を$xy$平面上に図示せよ.
(2)1個のさいころを4回投げ,$n$回目$(n = 1,\ 2,\ 3,\ 4)$に出た目の数を$a_n$とする.このとき
\[ (x,\ y) = (a_1-a_2,\ a_3-a_4) \]
が(1)の領域に含まれる確率を求めよ.
静岡大学 国立 静岡大学 2010年 第2問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
静岡大学 国立 静岡大学 2010年 第3問
$xyz$座標空間に,下図のように一辺の長さ1の立方体OABC-DEFGがある.この立方体を$xy$平面上の直線$y = -x$のまわりに,頂点Fが$z$軸の正の部分にくるまで回転させる.このとき,次の問いに答えよ.

(1)回転後の頂点Bの座標を求めよ.
(2)回転後の頂点A,Gで定まるベクトル$\overrightarrow{\mathrm{AG}}$の成分を求めよ.

\setlength\unitlength{1truecm}

(図は省略)
東北大学 国立 東北大学 2010年 第6問
$xy$平面において,原点を中心としP$(1,\ 0)$を頂点の1つとする正6角形を$X$とする.$A$を2次の正方行列とし,$X$の各頂点$(x,\ y)$に対して,行列$A$の表す移動
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) =A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
で得られる点$(x^\prime,\ y^\prime)$は$X$の辺上の点(頂点を含む)であるとする.以下の問いに答えよ.

(1)点Pが行列$A$の表す移動でP自身に移るとき,$X$の各頂点は$X$のいずれかの頂点に移ることを示せ.また,そのときの行列$A$を求めよ.
(2)点Pが行列$A$の表す移動で$X$のある頂点に移るとき,$X$の各頂点は$X$のいずれかの頂点に移ることを示せ.また,そのときの行列$A$を求めよ.
埼玉大学 国立 埼玉大学 2010年 第1問
平面上の点$(a,\ b)$は円$x^2 + y^2-100 = 0$上を動き,点$(c,\ d)$は円$x^2 + y^2-6x-8y+24 = 0$上を動くものとする.

(1)$ac+bd = 0$を満たす$(a,\ b)$と$(c,\ d)$の例を一組あげよ.
(2)$ac+bd$の最大値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2t-t^2,\quad y=1-t^2 \quad (0 \leqq t \leqq 1) \]
で与えられている.このとき,点Pの描く曲線を$C$とおく.

(1)$0<t<1$の範囲で,点Pの速さ(速度の大きさ)が最小になる時刻$t$を求めよ.
(2)(1)で求めた時刻$t$に対応する$C$上の点における接線$\ell$の方程式を求めよ.
(3)接線$\ell$と曲線$C$は,接点以外に共有点を持たないことを示せ.
(4)曲線$C$,接線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。