タグ「平面」の検索結果

162ページ目:全1904問中1611問~1620問を表示)
久留米大学 私立 久留米大学 2011年 第3問
$x,\ y$は実数で,曲線$9x^2+16y^2-144=0$を$\ell$とする.

(1)曲線$\ell$上の点で,$x+y$の値の最大値は$[$4$]$である.
(2)座標平面上の第$1$象限において,曲線$\ell$上の点を$\mathrm{P}$とする.曲線$\ell$上の点$\mathrm{P}$における接線と,$x$軸,$y$軸とで囲まれる三角形の面積の最小値は$[$5$]$であり,このときの点$\mathrm{P}$の座標は$[$6$]$である.
獨協大学 私立 獨協大学 2011年 第3問
$2$つの放物線$y=-x^2+2x+3$,$y=x^2-1$について,以下の問題に答えよ.

(1)$2$つの放物線を座標平面上に図示し,交点の座標を求めよ.
(2)$2$つの放物線に囲まれた部分の面積を求めよ.
産業医科大学 私立 産業医科大学 2011年 第2問
原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$に対し,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\pi$とおく.ただし,$a>0$,$b>0$,$c>0$とする.次の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$とおく.点$\mathrm{P}$が平面$\pi$上にあって,$\overrightarrow{\mathrm{OP}}$が平面$\pi$と垂直になるように,実数$s,\ t,\ u$の値をそれぞれ$a,\ b,\ c$を用いて表しなさい.
(2)線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{Q}$は$\overrightarrow{\mathrm{CQ}}=r \overrightarrow{\mathrm{CM}}$を満たす点であるとする.ベクトル$\overrightarrow{\mathrm{OQ}}$の大きさ$|\overrightarrow{\mathrm{OQ}}|$を最小にする実数$r$の値と,そのときの$|\overrightarrow{\mathrm{OQ}}|$の値を,それぞれ$a,\ b,\ c$を用いて表しなさい.
(3)$\triangle \mathrm{OAB}$,$\triangle \mathrm{OBC}$,$\triangle \mathrm{OCA}$の面積を,それぞれ$S_1,\ S_2,\ S_3$とするとき,$\triangle \mathrm{ABC}$の面積$S$を$S_1,\ S_2,\ S_3$を用いて表しなさい.
大阪薬科大学 私立 大阪薬科大学 2011年 第2問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面上に,$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 0)$がある.$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る$2$次関数のグラフを$C$,また,$C$の$\mathrm{O}$における接線を$\ell$とする.

(1)$C$の方程式は,$y=[ ]$である.
(2)$C$と$x$軸で囲まれる図形の面積は$[ ]$である.
(3)$\ell$の方程式は,$y=[ ]$である.
(4)$\ell$と線分$\mathrm{OP}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(5)$C$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる曲線を$C^\prime$とする.$\ell$が$C^\prime$の接線であるとき,$a,\ b$が満たす条件を求めなさい.
京都薬科大学 私立 京都薬科大学 2011年 第4問
四面体$\mathrm{OABC}$について,次の$[ ]$にあてはまる正の数を記入せよ.ただし,$[ア]:[イ]$,$[ウ]:[エ]$および$[オ]:[カ]$については,もっとも簡単な整数比で表すこと.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,線分$\mathrm{OG}$を$3:2$に内分する点を$\mathrm{D}$,直線$\mathrm{BD}$と平面$\mathrm{AOC}$の交点を$\mathrm{E}$,直線$\mathrm{OE}$と直線$\mathrm{AC}$との交点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OG}}=[ ] \overrightarrow{\mathrm{OA}}+[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となり,
\[ \overrightarrow{\mathrm{BD}}=[ ] \overrightarrow{\mathrm{OA}}-[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となる.また,$\mathrm{OE}:\mathrm{EF}=[ア]:[イ]$,$\mathrm{BD}:\mathrm{DE}=[ウ]:[エ]$であり,二つの四面体$\mathrm{ABFO}$と$\mathrm{CEFB}$の体積比は$[オ]:[カ]$である.
(2)$\angle \mathrm{COB}={30}^\circ$,$\angle \mathrm{AOC}={45}^\circ$,$\angle \mathrm{CAO}={60}^\circ$,$\mathrm{OA}=\sqrt{3}+1$,$\mathrm{BC}=\sqrt{2}$とすると,$\mathrm{OC}=[ ]$,$\mathrm{CA}=[ ]$であり,$\mathrm{OB}$は$[$*$]$または$[$**$]$である.ただし,$[$*$]>[$**$]$とする.
神戸薬科大学 私立 神戸薬科大学 2011年 第3問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)平面上にサイコロがある.サイコロの$4$つの側面のいずれかの面を$\displaystyle \frac{1}{4}$の確率で底面にする操作を考える.$1$の目が出ているサイコロに対してこの操作を$n$回繰り返す.このとき,以下の問に答えよ.ただし,$1$の目の裏面は$6$の目である.

(i) この操作を$n$回行ったとき,$1$か$6$の目が出ている確率を$P_n$とする.
$P_1=[ ]$,$P_2=[ ]$,$P_3=[ ]$である.
(ii) $P_n$を$n$の式で表すと,$P_n=[ ]$である.

(2)\begin{mawarikomi}{35mm}{
(図は省略)
}
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{AB}=1$,$\angle \mathrm{OAB}={90}^\circ$となる直角二等辺三角形である.$\angle \mathrm{BOA}$の二等分線上の点$\mathrm{C}$を$\mathrm{BC} \perp \mathrm{OC}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,以下の問に答えよ.

(i) $\overrightarrow{\mathrm{OC}}=[ ] \overrightarrow{a}+[ ] \overrightarrow{b}$である.
(ii) $\mathrm{AC}$の長さの$2$乗を求めると,$\mathrm{AC}^2=[ ]$である.

\end{mawarikomi}
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$m$を実数とするとき,$2$つの$2$次方程式
$2x^2+8x+2m=0$ $\cdots\cdots①$
$x^2+mx+2m-4=0$ $\cdots\cdots②$
が共通の解をもつのは,$m=[$*$]$または$m=[$**$]$のときである.ただし,$[$*$]>[$**$]$とする.$m=[$*$]$のとき,$①$と$②$の共通の解は$x=[ ]$であり,$m=[$**$]$のとき,$①$と$②$の共通の解は$x=[ ]$である.
(2)座標平面上に点$\mathrm{P}$がある.サイコロを投げて,偶数の目がでたら$\mathrm{P}$は$x$軸の正の方向に$1$動き,$1$または$5$の目がでたら$y$軸の正の方向に$1$動き,$3$の目がでたときには動かないとする.最初$\mathrm{P}$が原点にあったとする.サイコロを$5$回投げた後,$\mathrm{P}$が座標$(4,\ 1)$にある確率は$[ ]$,$(3,\ 1)$にある確率は$[ ]$,$(2,\ 1)$にある確率は$[ ]$である.また,$n$を$3$以上の自然数とし,サイコロを$n$回投げた後,$\mathrm{P}$が$(n-3,\ 1)$にある確率は$[ ]$である.
関西学院大学 私立 関西学院大学 2011年 第2問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$k$は実数とする.$xy$平面において直線
\[ y=-x+1 \cdots\cdots① \]
が放物線
\[ y=-x^2+k \cdots\cdots② \]
に接するとする.このとき$k$の値は$[ ]$である.また,放物線$②$と直線$①$が共有点をもたないような$k$の値の範囲は$[$*$]$である.放物線$②$上の点$\mathrm{P}(a,\ -a^2+k)$から直線$①$までの距離$d$は$d=[ ]$で表される.$k$が$[$*$]$の範囲にあるとき,放物線$②$上の点$\mathrm{P}(a,\ -a^2+k)$から直線$①$までの距離$d$が最小になるのは$a=[ ]$のときで,そのときの距離$d$の値は$[ ]$である.
(2)数列$\{a_n\}$において初項$a_1$から第$n$項$a_n$までの和を$S_n$とする.このとき
\[ S_n=2a_n+5n-12 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立っているとする.数列の初項$a_1$は$S_1$と一致することを使うと,$a_1$の値は$[ ]$であることがわかる.第$n$項$a_n$を$a_{n-1}$で表すと$a_n=[ ] (n=2,\ 3,\ 4,\ \cdots)$となるので,$a_n,\ S_n$をそれぞれ$n$の式で表すと$a_n=[ ]$,$S_n=[ ]$となる.
関西学院大学 私立 関西学院大学 2011年 第3問
$xy$平面において,$2$つの放物線$y=x^2$と$y=2x^2-3x+2$の$2$つの共有点のうち$x$座標が小さい方を$\mathrm{A}$,大きい方を$\mathrm{B}$とする.次の問いに答えよ.

(1)点$\mathrm{A}$,点$\mathrm{B}$の座標を求めよ.
(2)$2$つの放物線と直線$x=\sqrt{3}$で囲まれ,$x \leqq \sqrt{3}$の範囲にある部分の面積を求めよ.
(3)放物線$y=x^2$上の点$(p,\ p^2)$における放物線$y=x^2$の接線の方程式と,放物線$y=2x^2-3x+2$上の点$(q,\ 2q^2-3q+2)$における放物線$y=2x^2-3x+2$の接線の方程式を求めよ.
(4)$(3)$において,$2$つの接線が一致し,$p$が点$\mathrm{A}$の$x$座標より小さいとする.$p$の値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。