タグ「平面」の検索結果

157ページ目:全1904問中1561問~1570問を表示)
早稲田大学 私立 早稲田大学 2011年 第4問
$xy$-平面上の原点を$\mathrm{O}$とし,楕円$\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>b>0)$を$E$とする.$E$上の点$\mathrm{P}(s,\ t)$における$E$の法線と$x$軸との交点を$\mathrm{Q}$とする.点$\mathrm{P}$が$s>0,\ t>0$の範囲を動くとき,$\angle \mathrm{OPQ}$が最大になる点$\mathrm{P}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第5問
四面体$\mathrm{OABC}$において$\mathrm{OA}=\mathrm{BC}=2$,$\mathrm{OB}=3$,$\mathrm{OC}=\mathrm{AB}=4$,$\mathrm{AC}=2\sqrt{6}$である.
また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}= \overrightarrow{\mathrm{OC}}$とする.以下の問に答えよ.

(1)内積$\overrightarrow{a}\cdot\overrightarrow{b},\ \overrightarrow{a}\cdot\overrightarrow{c},\ \overrightarrow{b}\cdot\overrightarrow{c}$を求めよ.
(2)$\triangle \mathrm{OAB}$を含む平面を$H$とする.$H$上の点$\mathrm{P}$で直線$\mathrm{PC}$と$H$が直交するものをとる.このとき,$\overrightarrow{\mathrm{OP}}=x\overrightarrow{a}+y\overrightarrow{b}$となる$x,\ y$を求めよ.
(3)平面$H$を直線$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BO}$で右図のように$7$つの \\
領域ア,イ,ウ,エ,オ,カ,キにわける.点$\mathrm{P}$はどの \\
領域に入るか答えよ.
\img{304_23_2011_1}{20}
(4)辺$\mathrm{AB}$で$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$のなす角は鋭角になるか,直角になるか,それとも鈍角になるかを判定せよ.ただし,$1$辺を共有する$2$つの三角形のなす角とは,共有する辺に直交する平面での$2$つの三角形の切り口のなす角のことである.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
金沢工業大学 私立 金沢工業大学 2011年 第5問
$\mathrm{O}$を原点とする平面において,$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とし,$\mathrm{OC}$を対角線とする平行四辺形$\mathrm{OACB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくと,それぞれのベクトルの大きさは
\[ |\overrightarrow{a}|=2,\quad |\overrightarrow{b}|=3,\quad |\overrightarrow{c}|=\sqrt{19} \]
である.このとき,

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$であり,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{[イ]}$である.

(2)ベクトル$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{b}$に直交する$t$の値を$t_0$とすると,$\displaystyle t_0=\frac{[ウエ]}{[オ]}$であり,$|\overrightarrow{a}+t_0 \overrightarrow{b}|=\sqrt{[カ]}$である.

(3)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[キ]}{[ク]} \sqrt{[ケ]}$である.
早稲田大学 私立 早稲田大学 2011年 第3問
$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B} \displaystyle \biggl( 0,\ \frac{1}{2},\ 0 \biggr)$,$\mathrm{C} \displaystyle \biggl( 0,\ 0,\ \frac{1}{3} \biggr)$の定める平面を$\alpha$とする.点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}$を満たすようにとり,点$\mathrm{P}$から平面$\alpha$に垂線$\mathrm{PQ}$を下ろす.このとき,
\[ \overrightarrow{\mathrm{PQ}}=\frac{[ケ] \overrightarrow{\mathrm{OA}}+[コ] \overrightarrow{\mathrm{OB}}+[サ] \overrightarrow{\mathrm{OC}}}{[シ]} \]
となる.ただし,$[シ]$はできるだけ小さな自然数で答えること.
立教大学 私立 立教大学 2011年 第1問
$f(x)=x^3+3x^2+4$とするとき,座標平面上の曲線$y=f(x)$について,次の問に答えよ.

(1)曲線$y=f(x)$の変曲点を求めよ.
(2)点$(t,\ f(t))$における曲線$y=f(x)$の接線の方程式を求めよ.
(3)曲線$y=f(x)$の接線で点$(1,\ a)$を通るものがちょうど$3$本あるような$a$の範囲を求めよ.
(4)曲線$y=f(x)$の接線で点$(1,\ a)$を通るものがちょうど$2$本あるような最小の$a$に対して,$2$本の接線と曲線$y=f(x)$で囲まれる部分の面積を求めよ.
立教大学 私立 立教大学 2011年 第2問
座標平面上の直線$\ell$を$y=2x$,直線$m$を$\displaystyle y=-\frac{x}{2}$とする.このとき,次の問に答えよ.

(1)点P$(x,\ y)$に対し,Pを通り$\ell$に垂直な直線と$\ell$との交点をQ$(x^\prime, y^\prime)$とする.また,Pを通り$m$に垂直な直線と$m$との交点をR$(x^{\prime\prime},\ y^{\prime\prime})$とする.このとき,
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) =A \left( \begin{array}{c}
x \\
y
\end{array} \right),\quad \left( \begin{array}{c}
x^{\prime\prime} \\
y^{\prime\prime}
\end{array} \right) =B \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
が成り立つような行列$A,\ B$を求めよ.
(2)$A,\ B$を(1)で求めた行列とする.このとき,行列$C=\left( \begin{array}{rr}
\displaystyle\frac{14}{5} & -\displaystyle\frac{2}{5} \\ \\
-\displaystyle\frac{2}{5} & \displaystyle\frac{11}{5}
\end{array} \right)$に対して$C=\alpha A+\beta B$をみたす実数$\alpha,\ \beta$を求めよ.
(3)$n$を自然数とするとき,$C^n$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第7問
平面上の点$(x,\ y)$で,$\displaystyle \left( \frac{x}{3} \right)^{2n}+\left( \frac{y}{2} \right)^{2n}<1$を満たすような自然数$n$が存在するための必要十分条件は,$[ヌ]<x<[ネ]$かつ$[ノ]<y<[ハ]$である.
自治医科大学 私立 自治医科大学 2011年 第16問
$a$を実数の定数とする.円$x^2+y^2+(3a+1)x-(a+3)y-7a-10=0$は,$a$の値にかかわらず,常に定点を通る.その定点のなかで,座標平面上の第$1$象限にある点の$y$座標の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第1問
次の問いに答えよ.

(1)$x^2-4x+3<0$を満たすような$x^2-6x+8=0$の解を求めよ.
(2)座標平面上の$2$点$(2,\ 3)$と$(4,\ 2)$を通る直線に垂直に交わり,かつ円$x^2+y^2=5$に接する直線の方程式を求めよ.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=2:(1+\sqrt{3}):\sqrt{2}$であるとき,$\angle \mathrm{B}$の大きさを求めよ.また,$\sin A$の値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。