タグ「平面」の検索結果

155ページ目:全1904問中1541問~1550問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2011年 第4問
平面内に三角形ABCがある.その平面上で,1点Oを定めておく.次の問いに答えよ.

(1)三角形ABCの内部に点Pがあるとする.このとき,3つの三角形PBC,PCA,PABの面積の比が$x:y:z$であるならば,点Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$は次のように表されることを示せ.
\[ \overrightarrow{\mathrm{OP}}=\frac{x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}}+z \overrightarrow{\mathrm{OC}}}{x+y+z} \]
(2)三角形ABCの3辺の長さを$a=\text{BC},\ b=\text{CA},\ c=\text{AB}$とする.このとき三角形ABCの内心Iについて,その位置ベクトル$\overrightarrow{\mathrm{OI}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$と$a,\ b,\ c$を用いて表せ.
(3)三角形ABCが鋭角三角形であるとき,その外心Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$と$\alpha=\angle \text{CAB},\ \beta=\angle \text{ABC}$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2011年 第2問
平面上に正三角形でない鋭角三角形$\mathrm{ABC}$が与えられている.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\displaystyle s=\frac{a+b+c}{2}$とおく.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$をそれぞれ$s-c:s-b,\ s-a:s-c,\ s-b:s-a$に内分する点を$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$とする.また,$\mathrm{O}$を原点とする.次の問いに答えよ.

(1)点Nを$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{(s-a)\overrightarrow{\mathrm{OA}}+(s-b)\overrightarrow{\mathrm{OB}}+(s-c)\overrightarrow{\mathrm{OC}}}{s}$と定義するとき,$3$直線$\mathrm{AX}$,$\mathrm{BY}$,$\mathrm{CZ}$は$\mathrm{N}$で交わることを示せ.
(2)$\mathrm{P}$を$\triangle \mathrm{ABC}$の内部の点,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$,$\triangle \mathrm{PAB}$の面積をそれぞれ$S_A,\ S_B,\ S_C$とするとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{S_A\overrightarrow{\mathrm{OA}}+S_B\overrightarrow{\mathrm{OB}}+S_C\overrightarrow{\mathrm{OC}}}{S_A+S_B+S_C} \]
と表される.このことを用いて,$\triangle \mathrm{ABC}$の外心を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$,$a$,$b$,$c$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{N}$が$\mathrm{Q}$と$\mathrm{G}$を通る直線上にあるとき,$\triangle \mathrm{ABC}$は$2$等辺三角形であることを示せ.
小樽商科大学 国立 小樽商科大学 2011年 第4問
座標平面上に点$\displaystyle \mathrm{A} \left( 12,\ \frac{15}{2} \right)$と放物線$C:y=x^2$がある.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$における放物線$C$の接線は,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線に垂直である.このとき,点$\mathrm{P}$の座標を求めよ.
高知大学 国立 高知大学 2011年 第2問
$n$を2以上の自然数とする.平面上に距離が1である2点O,P$_0$がある.中心がOで半径1の円周上に点P$_k \ (k=1,\ 2,\ \cdots,\ n)$を反時計回りに$\displaystyle \angle \text{P}_k \text{OP}_0=\frac{k\pi}{n}$となるようにとる.三角形P$_k$OP$_{k-1}$の面積を$T_k$と表し,$\displaystyle S_n=\sum_{k=1}^n T_k$とおく.このとき,次の問いに答えよ.

(1)$S_2$を求めよ.
(2)$S_n$を$n$で表せ.
(3)$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)$e_k$を線分P$_{k-1}$P$_k$の長さとおいて,$\displaystyle E_n=\sum_{k=1}^n e_k$とする.このとき,
\[ S_n=\frac{1}{2}E_n \sin \frac{(n-1) \pi}{2n} \]
を示せ.
(5)$\displaystyle \lim_{n \to \infty}E_n$を求めよ.
福井大学 国立 福井大学 2011年 第2問
$1$辺の長さが$1$の正十二面体を考える.点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$, \\
$\mathrm{E}$,$\mathrm{F}$を図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
なお,正十二面体では,すべての面は合同な正五角形であり, \\
各頂点は$3$つの正五角形に共有されている.
\img{366_2546_2011_1}{36}


(1)$1$辺の長さが$1$の正五角形の対角線の長さを求めて, \\
内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{O}$から平面$\mathrm{ABD}$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.さらにその長さを求めよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第1問
座標平面上に3点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( x,\ \frac{1}{2} \right) \ (x>0)$を考える.ベクトル$t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}}$の長さを最小にする実数$t$の値を$t_0$とし,点$\mathrm{H}$を$\overrightarrow{\mathrm{OH}}=t_0 \overrightarrow{\mathrm{OA}}+(1-t_0) \overrightarrow{\mathrm{OB}}$で定まる点とする.

(1)$t_0$を$x$を用いて表せ.
(2)$\mathrm{H}$が線分$\mathrm{AB}$を2等分するとき,$x$の値を求めよ.
(3)$x$を動かすとき,$\triangle \mathrm{OAH}$の面積が最大になる$x$の値を求めよ.
京都教育大学 国立 京都教育大学 2011年 第3問
立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$の各辺の中点を,図$1$のように$\mathrm{I}$,$\mathrm{J}$,$\cdots$, \\
$\mathrm{S}$,$\mathrm{T}$とする.
\img{473_1279_2011_1}{15}


(1)$\overrightarrow{\mathrm{LM}},\ \overrightarrow{\mathrm{LK}}$を使って$\overrightarrow{\mathrm{LQ}},\ \overrightarrow{\mathrm{LR}},\ \overrightarrow{\mathrm{LO}}$をそれぞれ表せ.
(2)$\overrightarrow{\mathrm{LM}}$と$\overrightarrow{\mathrm{LK}}$のなす角を求めよ.
(3)点$\mathrm{M},\ \mathrm{L},\ \mathrm{K}$を通る平面による立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$の切り口は,正六角形であることを示せ.
岐阜大学 国立 岐阜大学 2011年 第5問
$a,\ b,\ c,\ d$を実数の定数とする.座標平面上の点$(2,\ 1)$を点$(5,\ 2)$に移す1次変換を表す行列を
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
とする.以下の問に答えよ.

(1)$A$が逆行列をもつための必要十分条件を$a$と$c$を用いて表せ.
(2)次の式を満たす$A$を求めよ.
\[ A^2=\left( \begin{array}{cc}
\displaystyle\frac{25}{4} & 0 \\
\displaystyle\frac{5}{2} & 0
\end{array} \right) \]
(3)$n$を自然数とする.(2)で求めた$A$について
\[ -\frac{2}{5}A+\left( -\frac{2}{5} \right)^2A^2+\left( -\frac{2}{5}\right)^3A^3+\cdots +\left( -\frac{2}{5} \right)^n A^n \]
を求めよ.
熊本大学 国立 熊本大学 2011年 第4問
$xyz$空間内の3点$\mathrm{P}(0,\ 0,\ 1)$,$\mathrm{Q}(0,\ 0,\ -1)$,$\mathrm{R}(t,\ t^2-t+1,\ 0)$を考える.$t$が$0 \leqq t \leqq 2$の範囲を動くとき,三角形$\mathrm{PQR}$が通過してできる立体を$K$とする.以下の問いに答えよ.

(1)$K$を$xy$平面で切ったときの断面積を求めよ.
(2)$K$の体積を求めよ.
宮城教育大学 国立 宮城教育大学 2011年 第1問
四面体$\mathrm{OABC}$と点$\mathrm{P}$について,
\[ 6 \overrightarrow{\mathrm{OP}}+3 \overrightarrow{\mathrm{AP}}+2 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]
が成り立っている.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$を通る平面と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)直線$\mathrm{AQ}$と辺$\mathrm{BC}$との交点を$\mathrm{R}$とするとき,四面体$\mathrm{OABC}$の体積$V$に対する四面体$\mathrm{PABR}$の体積$W$の比$\displaystyle \frac{W}{V}$を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。