タグ「平面」の検索結果

145ページ目:全1904問中1441問~1450問を表示)
大阪大学 国立 大阪大学 2011年 第2問
実数$\theta$が動くとき,$xy$平面上の動点P$(0,\ \sin \theta)$およびQ$(8 \cos \theta,\ 0)$を考える.$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,平面内で線分PQが通過する部分を$D$とする.$D$を $x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
岡山大学 国立 岡山大学 2011年 第3問
平面上の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は同一直線上にないものとする.この平面上の点$\mathrm{P}$が
\[ 2|\overrightarrow{\mathrm{OP}}|^2 - \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}} + 2 \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}} - \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} = 0 \]
を満たすとき,次の問いに答えよ.

(1)$\mathrm{P}$の軌跡が円となることを示せ.
(2)$(1)$の円の中心を$\mathrm{C}$とするとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$で表せ.
(3)$\mathrm{O}$との距離が最小となる$(1)$の円周上の点を$\mathrm{P}_0$とする.$\mathrm{A}$,$\mathrm{B}$が条件
\[ |\overrightarrow{\mathrm{OA}}|^2+5\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}+4|\overrightarrow{\mathrm{OB}}|^2 = 0 \]
を満たすとき,$\overrightarrow{\mathrm{OP_0}} = s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$となる$s,\ t$の値を求めよ.
大阪大学 国立 大阪大学 2011年 第1問
$a$を自然数とする.$\mathrm{O}$を原点とする座標平面上で行列$A=\left( \begin{array}{cc}
a & -1 \\
1 & a
\end{array} \right)$の表す$1$次変換を$f$とする.

(1)$r>0$および$0 \leqq \theta < 2\pi$を用いて$A=\left( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \right)$と表すとき,$r,\ \cos \theta,\ \sin \theta$を$a$で表せ.
(2)点$\mathrm{Q}(1,\ 0)$に対し,点$\mathrm{Q}_n (n = 1,\ 2,\ 3)$を
\[ \mathrm{Q}_1 = \mathrm{Q},\quad \mathrm{Q}_{n+1} = f(\mathrm{Q}_n) \]
で定める.$\triangle \mathrm{OQ}_n \mathrm{Q}_{n+1}$の面積$S(n)$を$a$と$n$を用いて表せ.
(3)$f$によって点$(2,\ 7)$に移されるもとの点$\mathrm{P}$の$x$座標の小数第一位を四捨五入して得られる近似値が$2$であるという.自然数$a$の値を求めよ.またこのとき$S(n)>{10}^{10}$となる最小の$n$の値を求めよ.ただし$0.3 < \log_{10}2 < 0.31$を用いてよい.
大阪大学 国立 大阪大学 2011年 第3問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2 +q$とおく.

(1)放物線$y = f(x)$が点$(0,\ 1)$を通り,しかも直線$y = x$の$x > 0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1)$,$(p_2,\ q_2)$に対して,$f_1(x) = (x-p_1)^2 + q_1$および$f_2(x) =(x-p_2)^2 +q_2$とおく.実数$\alpha,\ \beta \ $(ただし$\alpha < \beta$)に対して
\[ f_1(\alpha) < f_2(\alpha) \quad \text{かつ} \quad f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R : 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y = f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y = f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
金沢大学 国立 金沢大学 2011年 第1問
座標平面上に点$\mathrm{A}(2 \cos \theta,\ 2 \sin \theta)$,$\displaystyle \mathrm{B} \left( \frac{4}{3},\ 0 \right)$,$\mathrm{C}(\cos \theta,\ -\sin \theta)$がある.ただし,$0 < \theta < \pi$とする.次の問いに答えよ.

(1)直線$\mathrm{AC}$と$x$軸の交点を$\mathrm{P}$とする.$\mathrm{P}$の座標を$\theta$で表せ.
(2)$\triangle \mathrm{ABC}$の面積$S(\theta)$を求めよ.
(3)面積$S(\theta)$の最大値とそのときの$\theta$の値を求めよ.
埼玉大学 国立 埼玉大学 2011年 第3問
$a$を1より大きい定数とする.$xy$平面上の点$(a \cos t,\ \sqrt{a^2-1} \sin t)$と直線$x+y = \sqrt{3}a$の距離を$f(t)$とおく.$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$f(t)$の最小値を$m$とする.

(1)$m$を$a$の関数として表せ.
(2)(1)で求めた$a$の関数$m$の最小値を求めよ.
埼玉大学 国立 埼玉大学 2011年 第3問
$a$を$1$より大きい定数とする.$xy$平面上の点$(a \cos t,\ \sqrt{a^2-1} \sin t)$と直線$x+y = \sqrt{3}a$の距離を$f(t)$とおく.$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$f(t)$の最小値を$m$とする.

(1)$m$を$a$の関数として表せ.
(2)(1)で求めた$a$の関数$m$の最小値を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
座標平面上に点P$(0,\ 0)$,M$(\sqrt{3},\ 1)$をとる.点Mを中心とし,$x$軸に接するように円を描き,接点をAとおく.Pより円にもう1本の接線を引き接点をBとする.円に2線分PAとPBをつけ加えた図形を$x$軸に接したまますべることなく$x$軸の正の方向にころがし,線分PBが$x$軸に重なるまで移動させる.次の問いに答えよ.

(1)移動中の円の中心の座標を$(\sqrt{3}+t,\ 1)$とする.$t$の取りうる値の範囲を求めよ.
(2)点Pの軌跡を$C$とする.曲線$C$の接線$\ell$の傾きが$\displaystyle \frac{\sqrt{3}}{2}$のとき,直線$\ell$の方程式を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$y$軸で囲まれた部分の面積を求めよ.
広島大学 国立 広島大学 2011年 第1問
実数 $a,\ b$に対して,$2$次正方行列$A$と列ベクトル$B$を
\[ A=\left( \begin{array}{cc}
a & 2-a \\
1+a & 2
\end{array} \right),\quad B=\left( \begin{array}{c}
2b \\
b
\end{array} \right) \]
と定め,$E =\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.等式
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+B \]
により,座標平面上の点P$(x,\ y)$に対し点P$^\prime (x^\prime,\ y^\prime)$が定まるものとする.次の問いに答えよ.

(1)$a = b = -1$のとき,点P$^\prime (3,\ 2)$となる点P$(x,\ y)$を求めよ.
(2)$A^2 = kE \ (k \text{は実数})$を満たすとき,$a,\ k$の値を求めよ.
(3)どんな点Pに対しても点P$^\prime$が原点Oに一致しないための$a,\ b$の条件を求めよ.
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をOとし,Oを中心とする半径OBの円を$S$,円$S$と直線ABとの交点のうち点Bと異なる方をCとする.点Pは円$S$の内部にあり,線分BC上にないものとする.円$S$と直線PBとの交点のうち点Bと異なる方をQとする.$\overrightarrow{\mathrm{PA}} =\overrightarrow{a},\ \overrightarrow{\mathrm{PB}} =\overrightarrow{b},\ \angle \text{APB} = \theta$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}},\ \overrightarrow{\mathrm{OB}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)点Pが円$S$の内部にあることを用いて,$\displaystyle \cos \theta < \frac{|\overrightarrow{b}|}{4|\overrightarrow{a}|}$を証明せよ.
(3)PQの長さを$|\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \theta$で表せ.
(4)$\text{PA}=3,\ \text{PB}=2$とする.$\triangle \text{QAB} = 3 \triangle \text{POB}$を満たすとき,$\triangle$PABの面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。