タグ「平面」の検索結果

144ページ目:全1904問中1431問~1440問を表示)
北海道大学 国立 北海道大学 2011年 第3問
次の問いに答えよ.

(1)$xy$平面上の3点O$(0,\ 0)$,A$(2,\ 1)$,B$(1,\ 2)$を通る円の方程式を求めよ.
(2)$t$が実数全体を動くとき,$xyz$空間内の点$(t +2,\ t +2,\ t)$がつくる直線を$\ell$とする.3点O$(0,\ 0,\ 0)$,A$^\prime (2,\ 1,\ 0)$,B$^\prime (1,\ 2,\ 0)$を通り,中心をC$(a,\ b,\ c)$とする球面$S$が直線$\ell$と共有点をもつとき,$a,\ b,\ c$の満たす条件を求めよ.
名古屋大学 国立 名古屋大学 2011年 第3問
$xy$平面上に3点O$(0,\ 0)$,A$(1,\ 0)$,B$(0,\ 1)$がある.

(1)$a>0$とする.$\text{OP}:\text{AP}=1:a$を満たす点Pの軌跡を求めよ.
(2)$a>1>b>0$とする.$\text{OP}:\text{AP}:\text{BP}=1:a:b$を満たす点Pが存在するための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
東北大学 国立 東北大学 2011年 第4問
平面上に長さ3の線分OAを考え,ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{a}$で表す.$0 < t < 1$を満たす実数$t$に対して,$\overrightarrow{\mathrm{OP}} = t \overrightarrow{a}$となるように点Pを定める.大きさ 2のベクトル$\overrightarrow{b}$を$\overrightarrow{a}$と角$\theta \ (0 < \theta < \pi)$をなすようにとり,点Bを$\overrightarrow{\mathrm{OB}} =\overrightarrow{b}$で定める.線分OBの中点をQとし,線分AQと線分BPの交点をRとする.\\
\quad このとき,どのように$\theta$をとっても$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{AB}}$が垂直にならないような$t$の値の範囲を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
座標平面上に点P$(0,\ 0)$,M$(\sqrt{3},\ 1)$をとる.点Mを中心とし,$x$軸に接するように円を描き,接点をAとおく.Pより円にもう1本の接線を引き接点をBとする.円に2線分PAとPBをつけ加えた図形を$x$軸に接したまますべることなく$x$軸の正の方向にころがし,線分PBが$x$軸に重なるまで移動させる.次の問いに答えよ.

(1)移動中の円の中心の座標を$(\sqrt{3}+t,\ 1)$とする.$t$の取りうる値の範囲を求めよ.
(2)点Pの軌跡を$C$とする.$C$と$x$軸で囲まれた部分の面積を求めよ.
東京大学 国立 東京大学 2011年 第3問
$L$を正定数とする.座標平面の$x$軸上の正の部分にある点P$(t,\ 0)$に対し,原点Oを中心とし点Pを通る円周上を,Pから出発して反時計回りに道のり$L$だけ進んだ点をQ$(u(t),\ v(t))$と表す.

(1)$u(t),\ v(t)$を求めよ.
(2)$0<a<1$の範囲の実数$a$に対し,積分
\[ f(a) = \int_a^1 \sqrt{\{u^{\, \prime}(t)\}^2 + \{v^{\, \prime}(t)\}^2 } \, dt \]
を求めよ.
(3)極限$\displaystyle \lim_{a \to +0}\frac{f(a)}{\log a}$を求めよ.
東京大学 国立 東京大学 2011年 第4問
座標平面上の1点P$\displaystyle \left( \frac{1}{2},\ \frac{1}{4} \right)$をとる.放物線$y=x^2$上の2点Q$(\alpha,\ \alpha^2)$,R$(\beta,\ \beta^2)$を,3点P,Q,RがQRを底辺とする二等辺三角形をなすように動かすとき,$\triangle$PQRの重心G$(X,\ Y)$の軌跡を求めよ.
名古屋大学 国立 名古屋大学 2011年 第1問
$\displaystyle -\frac{1}{4}<s<\frac{1}{3}$とする.$xyz$空間内の平面$z = 0$の上に長方形
\[ R_s = \{f(x,\ y,\ 0) \; | \; 1 \leqq x \leqq 2+4s,\ 1 \leqq y \leqq 2-3s\} \]
がある.長方形$R_s$を$x$軸のまわりに$1$回転してできる立体を$K_s$とする.

(1)立体$K_s$の体積$V(s)$が最大となるときの$s$の値,およびそのときの$V(s)$の値を求めよ.
(2)$s$を$(1)$で求めた値とする.このときの立体$K_s$を$y$軸のまわりに$1$回転してできる立体$L$の体積を求めよ.
東京大学 国立 東京大学 2011年 第6問
次の問いに答えよ.

(1)$x,\ y$を実数とし,$x>0$とする.$t$を変数とする2次関数$f(t)=xt^2+yt$の$0 \leqq t \leqq 1$における最大値と最小値の差を求めよ.
(2)次の条件を満たす点$(x,\ y)$の全体からなる座標平面内の領域を$S$とする.\\
$x>0$かつ,実数$z$で$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して
\[ 0 \leqq xt^2+yt +z \leqq 1 \]
を満たすようなものが存在する.\\
$S$の概形を図示せよ.
(3)次の条件を満たす点$(x,\ y,\ z)$全体からなる座標空間内の領域を$V$とする.\\
$0 \leqq x \leqq 1$かつ,$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して,
\[ 0 \leqq xt^2+yt + z \leqq 1 \]
が成り立つ.\\
$V$の体積を求めよ.
神戸大学 国立 神戸大学 2011年 第1問
実数$x,\ y$に対して,等式
\[ x^2+y^2=x+y \cdots\cdots① \]
を考える.$t = x+y$とおく.以下の問に答えよ.

(1)$\maru{1}$の等式が表す$xy$平面上の図形を図示せよ.
(2)$x$と$y$が$①$の等式をみたすとき,$t$のとりうる値の範囲を求めよ.
(3)$x$と$y$が$①$の等式をみたすとする.
\[ F = x^3+y^3-x^2y-xy^2 \]
を$t$を用いた式で表せ.また,$F$のとりうる値の最大値と最小値を求めよ.
神戸大学 国立 神戸大学 2011年 第2問
$xy$平面上に相異なる4点A,B,C,Dがあり,線分ACと BDは原点Oで交わっている.点Aの座標は$(1,\ 2)$で,線分OAとODの長さは等しく,四角形ABCDは円に内接している.$\angle \text{AOD} = \theta$とおき,点Cの$x$座標を$a$,四角形ABCDの面積を$S$とする.以下の問に答えよ.

(1)線分OCの長さを$a$を用いた式で表せ.また,線分OBとOCの長さは等しいことを示せ.
(2)$S$を$a$と$\theta$を用いた式で表せ.
(3)$\displaystyle \theta = \frac{\pi}{6}$とし,$20 \leqq S \leqq 40$とするとき,$a$のとりうる値の最大値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。