タグ「平面」の検索結果

138ページ目:全1904問中1371問~1380問を表示)
愛知工業大学 私立 愛知工業大学 2012年 第1問
次の$[ ]$を適当に補え.

(1)$|x+1|-3 |x-1|=4x+1$をみたす$x$は$x=[ア]$である.
(2)$3$つのさいころを同時に投げるとき,$2$つは同じで他の$1$つは異なる目が出る確率は$[イ]$であり,$3$つとも異なる目が出る確率は$[ウ]$である.
(3)$\displaystyle S_n=\sum_{k=1}^n \left( \frac{1}{2k-1}-\frac{1}{2k+1} \right)$とする.$S_n$を$n$の式で表すと$S_n=[エ]$であり,$\displaystyle S_n>\frac{2011}{2012}$となるような最小の自然数$n$の値は$n=[オ]$である.
(4)$xy$平面において,点$(0,\ 1)$を$\mathrm{A}$とする.点$\mathrm{P}$が直線$y=2x-1$上を動くとき,線分$\mathrm{AP}$を$1:2$に内分する点は直線$y=[カ]$上を動く.
(5)$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[キ]$,$\sin \theta=[ク]$である.
(6)$f(x)=\sqrt{x}$のとき,$f^\prime(x)=[ケ]$である.また,$\displaystyle \int_{\left( \frac{\pi}{2} \right)^2}^{\pi^2} \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx=[コ]$である.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
安田女子大学 私立 安田女子大学 2012年 第4問
座標平面上の直線$y=2x+1$を直線$\ell$とし,直線$\ell$と$y$軸の交点を$\mathrm{A}$とする.第$1$象限内における直線$\ell$上の任意の点を中心とし$\mathrm{A}$を通る円$\mathrm{O}$を考える.直線$\ell$と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なるもう一方の交点を$\mathrm{B}$とする.また,$\mathrm{A}$を通り$x$軸に平行な直線と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なる交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{BAC}$の値を求めよ.
(2)直線$\mathrm{BC}$は$y$軸に平行であることを証明せよ.
(3)円$\mathrm{O}$が$x$軸と接するとき,接点の$x$座標を求めよ.
杏林大学 私立 杏林大学 2012年 第4問
座標平面上の点$\mathrm{P}(x,\ y)$が$t \geqq 0$に対して
\[ x=1-e^{-3t},\quad y=8-3t-8e^{-3t} \]
で表されるとき,以下の問いに答えよ.

(1)$t \to \infty$のとき$x$の極限値は
\[ \lim_{t \to \infty} x=[ア] \]
であり,$t=0$のとき
\[ \frac{dy}{dt}=[イウ] \]
となる.また,任意の$t$に対して

$\displaystyle \frac{d^2 x}{dt^2}+[エ] \frac{dx}{dt}=[オ]$,

$\displaystyle \frac{d^2 y}{dt^2}+[カ] \frac{dy}{dt}=[キク]$

が成り立つ.
(2)$\displaystyle \frac{dy}{dx}=0$となる$t$の値を$\alpha$とすると,$e^\alpha=[ケ]$となる.このときの$x$の値を$\beta$とすると,$\displaystyle \beta=\frac{[コ]}{[サ]}$であり,$y$の値は$[シ]-[ス] \alpha$である.
(3)$0 \leqq t \leqq \alpha$に対して点$\mathrm{P}$の描く曲線と,直線$x=\beta$および$x$軸で囲まれた部分の面積は$\displaystyle \frac{[セソ]}{[タチ]}+\frac{[ツ]}{[テ]} \alpha$となる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2012年 第1問
空間内に,同じ平面上にない$4$つの点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$の重心をそれぞれ$\mathrm{G}$,$\mathrm{G}^\prime$とし,線分$\mathrm{OC}$を$2:3$に内分する点を$\mathrm{P}$,線分$\mathrm{AB}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.ただし,$t$は$0<t<1$なる定数である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.以下の$[$1$]$から$[$10$]$に答えなさい.

このとき,$\overrightarrow{\mathrm{OQ}}=[$1$] \overrightarrow{a}+[$2$] \overrightarrow{b}+[$3$] \overrightarrow{c}$,$\overrightarrow{\mathrm{OG}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{b}+[$6$] \overrightarrow{c}$である.また線分$\mathrm{GG}^\prime$と線分$\mathrm{PQ}$が交わるとき$t=[$7$]$であり,線分$\mathrm{GG}^\prime$と線分$\mathrm{PQ}$の交点$\mathrm{R}$は線分$\mathrm{PQ}$を$[$8$]:[$9$]$に内分する.さらに,$\displaystyle \overrightarrow{a} \cdot \overrightarrow{c}=\frac{2}{5}$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=\frac{4}{15}$で,線分$\mathrm{PQ}$と線分$\mathrm{OP}$が直交するならば,$|\overrightarrow{c}|=[$10$]$である.
なお,この空間の任意のベクトル$\overrightarrow{m}$は,実数$u,\ v,\ w$を用いて,
\[ \overrightarrow{m}=u \overrightarrow{a}+v \overrightarrow{b}+w \overrightarrow{c} \]
の形に表すことができ,しかも,表し方はただ$1$通りである.
東京理科大学 私立 東京理科大学 2012年 第2問
$r$を$0<r<1$を満たす実数として,次のように行列とベクトルを定める.
\[ A=\left( \begin{array}{cc}
r & 0 \\
2r-1 & 1-r
\end{array} \right) ,\quad P=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad Q=\left( \begin{array}{c}
0 \\
1
\end{array} \right) \]
またベクトル$Q_n=\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を
\[ Q_1=\left( \begin{array}{c}
a_1 \\
b_1
\end{array} \right)=Q,\quad Q_n=AQ_{n-1}+P \quad (n \geqq 2) \]
として定める.

(1)$AP=\alpha P$,$AQ=\beta Q$を満たす定数$\alpha$,$\beta$を求めよ.
(2)$A^nP,\ A^nQ$を求めよ.
(3)$Q_n=\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)$を求めよ.
(4)座標平面において,各$n=1,\ 2,\ 3,\ \cdots$に対し座標が$(a_n,\ 0)$である点を$X_n$,座標が$(a_n,\ b_n-a_n)$である点を$Y_n$とする.さらに,台形$X_nX_{n+1}Y_{n+1}Y_n$の面積を$S_n (n=1,\ 2,\ 3,\ \cdots)$とし,
\[ S=\sum_{n=1}^\infty S_n=S_1+S_2+\cdots +S_n+ \cdots \]
とする.

(i) $S$を求めよ.
(ii) $r$が$0<r<1$の範囲を動くとき,$S$の最大値とそのときの$r$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
座標平面上の点$\mathrm{P}(p,\ q)$が,媒介変数$\theta$により
\[ p=1+2 \cos \theta,\quad q=1+\sin \theta \quad (-\pi<\theta \leqq \pi) \]
で与えられている.$a$を非負の定数とするとき,点$\mathrm{P}$から,原点$\mathrm{O}$と点$(1,\ a)$を通る直線に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$の座標を$(u,\ v)$とする.点$\mathrm{P}$が$p \geqq 2$を満たす範囲にあるとき,以下の問いに答えよ.

(1)$\theta$と$q$の値の範囲を求めよ.
(2)$u$を$a$と$\theta$を用いて表せ.
(3)$N=\sqrt{u^2+(2+a^2)v^2}$とおく.$N$を$a$と$\theta$を用いて表せ.
(4)各$a$に対して,点$\mathrm{P}$が$p \geqq 2$を満たすように動くとき,$(3)$で求めた$N$の最大値を$M(a)$により表す.

(i) $M(0)$を求めよ.
(ii) $a>0$のとき,$M(a)$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$a,\ b,\ c$を整数とするとき,以下の問いに答えなさい.

(i) $a+b+c=10,\ a \geqq 1,\ b \geqq 1,\ c \geqq 1$を満たす整数解$a,\ b,\ c$の組の総数は$[ア][イ]$である.
(ii) $a+b+c \leqq 10,\ a \geqq 1,\ b \geqq 1,\ c \geqq 1$を満たす整数解$a,\ b,\ c$の組の総数は$[ウ][エ][オ]$である.
(iii) $a+b+c \leqq 10,\ 7 \geqq a \geqq 1,\ 7 \geqq b \geqq 1,\ 7 \geqq c \geqq 1$を満たす整数解$a,\ b,\ c$の組の総数は$[カ][キ][ク]$である.

(2)$\angle \mathrm{B}=2 \angle \mathrm{A}$を満たす$\triangle \mathrm{ABC}$について,以下の問いに答えなさい.

(i) 式$\displaystyle \frac{\sin B+\sin C}{\sin A}$がとりうる値の範囲は
\[ [ア]<\frac{\sin B+\sin C}{\sin A}<[イ] \]
である.
(ii) $\mathrm{AB}=2$,$\mathrm{AC}=3$のとき,
\[ \cos A=\frac{[ウ]+\sqrt{[エ][オ]}}{[カ]} \]
であり,
\[ \mathrm{BC}=-[キ]+\sqrt{[ク][ケ]} \]
である.

(3)座標平面上に,点$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$および放物線$C:y=-x^2+mx+1$(ただし,$m$は実数の定数)がある.$2$点$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$を通る直線を$\ell$とする.

(i) 放物線$C$と直線$\ell$が$2$個の異なる共有点をもつのは,
\[ m<-\frac{[ア]}{[イ]},\quad m>\frac{[ウ]}{[エ]} \]
のときである.
以下,放物線$C$と直線$\ell$が$2$個の異なる共有点をもつ場合について考え,この$2$個の共有点を$\mathrm{P}$,$\mathrm{Q}$とする.
(ii) 点$\mathrm{P}$と点$\mathrm{Q}$のすくなくとも一方が線分$\mathrm{AB}$(端点$\mathrm{A}$,$\mathrm{B}$を含む)上にあるのは
\[ m>\frac{[オ]}{[カ]} \]
のときである.
(iii) 点$\mathrm{P}$と点$\mathrm{Q}$がともに,線分$\mathrm{AB}$(端点$\mathrm{A}$,$\mathrm{B}$を含む)上にあるのは
\[ \frac{[キ]}{[ク]}<m \leqq \frac{[ケ][コ]}{[サ]} \]
のときである.また,$m$がこの範囲内で動くとき,線分$\mathrm{PQ}$の長さは,
$\displaystyle m=\frac{[シ][ス]}{[セ]}$で最大値$\displaystyle \frac{[ソ][タ]}{[チ]} \times \sqrt{[ツ]}$をとる.
九州産業大学 私立 九州産業大学 2012年 第1問
次の問いに答えよ.

(1)$3x^2+6x-2=0$の$2$つの解を$\alpha,\ \beta$とする.

(i) $\displaystyle \alpha^2\beta+\alpha\beta^2=\frac{[ア]}{[イ]}$である.

(ii) $\displaystyle (\alpha-\beta)^2=\frac{[ウエ]}{[オ]}$である.

(iii) $\alpha^3+\beta^3=[カキク]$である.

(2)平面上の$3$点$(-1,\ 9)$,$(0,\ 3)$,$(2,\ 3)$を通る放物線の方程式は$y=[ケ]x^2-[コ]x+[サ]$である.
(3)$\displaystyle f(x)=(\log_3 27x)(\log_3 \frac{x}{3})=(\log_3 x)^2+[シ] \log_3 x-[ス]$である.$f(x)$は$\displaystyle x=\frac{[セ]}{[ソ]}$で最小値$[タチ]$をとる.
(4)$7$個の小石を$3$人の子供$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に配る.このとき,$1$個ももらえない子供はいないとする.また,小石は互いに区別されないものとする.

(i) 小石の配り方は$[ツテ]$通りである.
(ii) 子供$\mathrm{A}$にちょうど$3$個の小石が配られる確率は$\displaystyle \frac{[ト]}{[ナ]}$である.
東京理科大学 私立 東京理科大学 2012年 第3問
$a$を$a>2$であるような実数とする.座標平面上で,曲線$\displaystyle y=\frac{1}{x}$を$C_1$とし,点$(a,\ a)$を中心とし点$(1,\ 1)$を通る円を$C_2$とする.曲線$C_1$と円$C_2$の点$(1,\ 1)$以外の共有点のうち,$x$座標が$1$より小さいものを$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=x$に下ろした垂線と直線$y=x$の交点を$\mathrm{H}$とする.

(1)円$C_2$の方程式を求めよ.
(2)点$\mathrm{H}$の座標を求めよ.また,点$\mathrm{H}$と点$(1,\ 1)$の距離を求めよ.
(3)$t$を正の実数とする.直線$y=x$上にあり点$(1,\ 1)$からの距離が$t$である点のうち,$x$座標が$1$より大きいものを$\mathrm{P}$とする.点$\mathrm{P}$を通り直線$y=x$に垂直な直線と曲線$C_1$の交点のうち,$x$座標が$1$より小さいものを$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(4)直線$y=x$と線分$\mathrm{BH}$,および曲線$C_1$で囲まれた部分を,直線$y=x$の周りに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。