タグ「平面」の検索結果

134ページ目:全1904問中1331問~1340問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を正の定数とし,座標平面において放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸の交点を$\mathrm{R}$とする.$x$軸上の点$\mathrm{Q}$を,$\mathrm{RP}=\mathrm{RQ}$を満たし,その$x$座標が$\mathrm{R}$の$x$座標より大きいものとする.

(1)点$\mathrm{P}$を通り$\ell$と直交する直線の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\ell$と点$\mathrm{P}$において接し$x$軸とも接する円で,中心が第$1$象限にあるものを考える.この円の中心の座標を$(q,\ r)$とするとき,$q,\ r$を$t$と$a$を用いて表せ.
(4)$(3)$の$q,\ r$に対して,$t$が$0$に限りなく近づくときの,$\displaystyle \frac{q}{t},\ \frac{r}{t^2},\ \frac{r}{q^2}$の極限値をそれぞれ求めよ.
東京理科大学 私立 東京理科大学 2012年 第2問
$s,\ t$を実数とし,$0<s<1$とする.座標空間内の$3$点
\[ \begin{array}{l}
\mathrm{P}((2-s)+s \cos t,\ 0,\ (2-s)+s \sin t), \\ \\
\displaystyle \mathrm{Q} \left( \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ (2-s)+s \sin t \right), \\ \\
\mathrm{R}(0,\ 0,\ (2-s)+s \sin t)
\end{array} \]
について,次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を含む平面の方程式を求めよ.
(2)$\mathrm{RP}=\mathrm{RQ}$を示せ.

点$\mathrm{Q}$は,点$\mathrm{R}$を中心とし$\mathrm{RP}$を半径とする円周上に存在する.このとき,弦$\mathrm{PQ}$に対する弧$\mathrm{PQ}$と,半径$\mathrm{RP}$および半径$\mathrm{RQ}$で囲まれる扇形を$C$とする.ただし,$C$の中心角$\angle \mathrm{PRQ}$は$\pi$以下とする.

(3)$C$の面積を$s$と$t$を用いて表せ.
(4)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{R}$の$z$座標の動く範囲を$s$を用いて表せ.
(5)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_1$を$s$を用いて表せ.
(6)$t$が$\displaystyle \frac{\pi}{2} \leqq t \leqq \frac{3\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_2$を$s$を用いて表せ.
(7)上の$(5)$,$(6)$の$V_1$,$V_2$に対して,$s$が$\displaystyle \frac{1}{4} \leqq s \leqq \frac{1}{2}$の範囲を動くときの$V_1-V_2$の最大値とそのときの$s$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
座標平面上において,放物線$y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとり,線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,$\mathrm{M}$の座標を$(a,\ b)$とする.

(1)$a=1$,$b=3$のとき,線分$\mathrm{PQ}$の長さ$\mathrm{PQ}$を求めなさい.
(2)$\mathrm{PQ}=4$のとき,$b$を$a$の式で表しなさい.
(3)$\mathrm{PQ}=4$を満たしながら$\mathrm{P}$,$\mathrm{Q}$を動かすとき,$b$の最小値を求めなさい.
日本女子大学 私立 日本女子大学 2012年 第1問
空間内に$3$点$\displaystyle \mathrm{A} \left( 0,\ \frac{1}{\sqrt{2}},\ \frac{1}{\sqrt{3}} \right)$,$\displaystyle \mathrm{B} \left( 1,\ 0,\ \frac{1}{\sqrt{3}} \right)$,$\displaystyle \mathrm{C} \left( 1,\ \frac{1}{\sqrt{2}},\ 0 \right)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とする.

(1)平面$\alpha$に関して原点$\mathrm{O}(0,\ 0,\ 0)$と対称な点$\mathrm{R}$の座標を求めよ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対し,$x>0$で定義された関数$f_n(x)$を
\[ f_n(x)=\frac{\log x}{x^n} \quad (x>0) \]
で定める.ただし,$\log$は自然対数を表す.

$t>1$とするとき,座標平面において曲線$y=f_n(x)$の$x \leqq t$の部分,$x$軸,直線$x=t$の$3$つで囲まれている図形の面積を$S_n(t)$とする.また,$4$点$(1,\ 0)$,$(t,\ 0)$,$(t,\ f_n(t))$,$(1,\ f_n(t))$を頂点とする長方形の面積を$T_n(t)$とする.

(1)関数$f_n(x)$が極大となるときの$x$の値と,そのときの$f_n(x)$の極大値を求めよ.
(2)$t$が$t>1$を動くとき,$T_n(t)-S_n(t)$が最大となる$t$の値を求めよ.
(3)$S_1(t)$と$S_n(t) (n \geqq 2)$を求めよ.
(4)各$n \geqq 2$に対して$T_n(t)=S_n(t)$となる$t (t>1)$がただ$1$つあることを示せ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$となることを用いてもよい.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
以下の問いに答えなさい.

(1)関数$\displaystyle f(x)=\frac{1}{3} \cos 3x-\frac{1}{2} \cos 2x+\cos x (0<x<\pi)$について考える.

(i) $\displaystyle x=\frac{\pi}{12}$のとき,$f(x)$の値$\displaystyle f \left( \frac{\pi}{12} \right)$を求めなさい.
(ii) 関数$f(x)$の極値を求めなさい.

(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される座標平面上の点の移動($1$次変換)$f$が条件

「点$\mathrm{P}(x,\ y)$が直線$y=-x+1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$\displaystyle y=-\frac{2}{3}x+\frac{7}{3}$上にある.また,点$\mathrm{P}(x,\ y)$が直線$y=2x-1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$x=1$上にある」

を満たすとき,$A$を求めなさい.
日本女子大学 私立 日本女子大学 2012年 第3問
点$\mathrm{H}$を中心,線分$\mathrm{BC}$を直径とする円を底面とし,点$\mathrm{O}$を頂点とする円錐を考える.ただし,線分$\mathrm{OH}$は底面に対して垂直であるとする.右側の図は円錐の表面の展開図の底面以外の部分である.左側の図のように底面に平行な平面で円錐を切断する.この切断面の円と母線$\mathrm{OB}$との交点を$\mathrm{A}$,母線$\mathrm{OC}$との交点を$\mathrm{D}$,直線$\mathrm{OH}$との交点を$\mathrm{G}$とする.さらに,線分$\mathrm{AB}$上に点$\mathrm{E}$をとる.左側の図で線分の長さが$\mathrm{AD}=2$,$\mathrm{BC}=8$,$\mathrm{GH}=6 \sqrt{2}$,$\mathrm{AE}=3$のとき,以下の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)線分$\mathrm{OA}$の長さと,この展開図の扇形の中心角$\theta$の大きさを求めよ.
(3)円錐の表面上で,底面を横切らずに,点$\mathrm{B}$から母線$\mathrm{OC}$上の点を経て点$\mathrm{E}$に至る最短距離を,この展開図を利用して求めよ.
(4)母線$\mathrm{OC}$と$(3)$の最短距離を与える線の交点を$\mathrm{P}$とする.線分$\mathrm{CP}$の長さを求めよ.
(図は省略)
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。