タグ「平面」の検索結果

133ページ目:全1904問中1321問~1330問を表示)
学習院大学 私立 学習院大学 2012年 第1問
平面上の点で,その座標が両方とも整数であるものを格子点と呼ぶ.原点を$\mathrm{O}$とし,$\mathrm{O}$以外の格子点$\mathrm{P}$に対して,線分$\mathrm{OP}$上にある$\mathrm{O}$と$\mathrm{P}$以外の格子点の個数を$n(\mathrm{P})$で表す.たとえば,点$\mathrm{P}(2,\ 3)$については$n(\mathrm{P})=0$である.条件
\[ 1 \leqq a \leqq 30 \quad \text{かつ} \quad 1 \leqq b \leqq 30 \quad \text{かつ} \quad n(\mathrm{P})=4 \]
をみたす格子点$\mathrm{P}(a,\ b)$の個数を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
$\mathrm{O}$を原点とする座標空間において,$4$点
\[ \mathrm{A}_1(1,\ 1,\ 1),\quad \mathrm{B}_1(-1,\ -1,\ 1),\quad \mathrm{C}_1(1,\ -1,\ -1),\quad \mathrm{D}_1(-1,\ 1,\ -1) \]
を考えると,立体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$は正四面体である.このとき,以下の設問に答えよ.

(1)正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面に平行な平面$z=-1+h (0 \leqq h \leqq 2)$で切ったときに出来る図形の面積を$S(h)$とすると,
\[ S(h)=-[$34$]h^2+[$35$]h \]
と表され,$S(h)$は$h=[$36$]$のとき最大値$[$37$]$をとる.(このときの図形はペトリー多角形と呼ばれている.)さらに,
\[ V_1=\int_0^2 S(h) \, dh=\frac{[$38$]}{[$39$]} \]
とおくと,$V_1$は正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$の体積となっている.
(2)三角形$\mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,三角形$\mathrm{C}_1 \mathrm{D}_1 \mathrm{A}_1$,三角形$\mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1$の重心をそれぞれ$\mathrm{A}_2$,$\mathrm{B}_2$,$\mathrm{C}_2$,$\mathrm{D}_2$とする.このとき,立体$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$は再び,正四面体となる.(このことを,正四面体は自己双対であるという.)同様に,$n$を自然数として,三角形$\mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,三角形$\mathrm{C}_n \mathrm{D}_n \mathrm{A}_n$,三角形$\mathrm{D}_n \mathrm{A}_n \mathrm{B}_n$,三角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n$の重心をそれぞれ$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$とする.このとき,
\[ \overrightarrow{\mathrm{OA}}_1+\overrightarrow{\mathrm{OA}}_2+\cdots +\overrightarrow{\mathrm{OA}}_n=\frac{[$40$]}{[$41$]} \left\{ 1-\left( -\frac{[$42$]}{[$43$]} \right)^n \right\} \overrightarrow{\mathrm{OA}}_1 \]
である.また,正四面体$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の表面積$S_n$と体積$V_n$は,それぞれ,
\[ S_n=[$44$] \cdot [$45$]^{-[$46$]n+\frac{[$47$]}{2}},\quad V_n=[$48$] \cdot [$49$]^{-[$50$]n+[$51$]} \]
である.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
中央大学 私立 中央大学 2012年 第2問
平面上に$2$本の平行な直線の組が$n$組ある.異なる組の直線は平行ではなく,どの$3$本の直線も$1$点で交わることはないとする.これら$2n$本の直線の交点の総数を$a_n$,平面がこれら$2n$本の直線によって分けられている部分の個数を$b_n$とする.このとき,以下の問いに答えよ.

(1)$a_{n+1}$と$a_n$の関係式を求めよ.
(2)$a_n$を求めよ.
(3)$b_{n+1}$と$b_n$の関係式を求めよ.
(4)$b_n$を求めよ.
中央大学 私立 中央大学 2012年 第2問
座標平面上に円$(x+4)^2+y^2=16$と点$\mathrm{P}(4,\ 0)$がある.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
上智大学 私立 上智大学 2012年 第2問
$xy$平面上で次の不等式の表す領域を$D$とする.
\[ \log_2(2y+1)-1 \leqq \log_2x \leqq 2+\log_2y \leqq \log_2x+\log_2(4-2x) \]

(1)$D$は次の不等式
\[ x \leqq [ケ]y \leqq [コ]x^2+[サ]x \]
および
\[ y \leqq [シ]x+\frac{[ス]}{[セ]} \]
により定まる領域である.

(2)$D$の面積は$\displaystyle \frac{[ソ]}{[タ]}$である.

(3)$s<1$とし,点$(x,\ y)$が$D$上を動くとき,$y-sx$の最大値を$f(s)$とする.

(i) $[チ] \leqq s<1$のとき,$\displaystyle f(s)=[ツ]s+\frac{[テ]}{[ト]}$
(ii) $\displaystyle \frac{[ナ]}{[ニ]} \leqq s<[チ]$のとき,
\[ f(s)=\frac{[ヌ]}{[ネ]}s^2+[ノ]s+\frac{[ハ]}{[ヒ]} \]
(iii) $\displaystyle s<\frac{[ナ]}{[ニ]}$のとき,$\displaystyle f(s)=\frac{[フ]}{[ヘ]}s+\frac{[ホ]}{[マ]}$である.
中央大学 私立 中央大学 2012年 第2問
$\mathrm{O}$を$xy$平面の原点とする.以下の設問に答えよ.

(1)$xy$平面上の点$\mathrm{A}(a_1,\ a_2)$と点$\mathrm{B}(b_1,\ b_2)$を考える.
\[ a_1>0,\quad a_2>0,\quad b_1>0,\quad b_2<0 \]
であるとき,$\triangle \mathrm{AOB}$の面積を$a_1,\ a_2,\ b_1,\ b_2$を用いて表せ.
(2)対数関数
\[ f(x)=\log_2x,\quad g(x)=\log_{\frac{1}{4}}x \]
に対し,$xy$平面上の曲線
\[ \begin{array}{ll}
C_1:y=f(x) & (x \geqq 1) \\
C_2:y=g(x) & (x \geqq 1)
\end{array} \]
を考える.$C_1$上に点$\mathrm{S}(s,\ f(s))$,$C_2$上に点$\mathrm{T}(t,\ g(t))$をとる.ただし,$s \cdot t=8$とする.このとき$s$を用いて,$\triangle \mathrm{SOT}$の面積$H(s)$を表せ.
(3)$(2)$の$H(s)$に対し,$H(3)$と$H(4)$の大小を比較せよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。