タグ「平面」の検索結果

124ページ目:全1904問中1231問~1240問を表示)
愛知教育大学 国立 愛知教育大学 2012年 第7問
座標平面上の3点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$,$\mathrm{B}(3,\ 0)$について,$\angle \mathrm{PAB}=3 \angle \mathrm{POB}$となる$y>0$の領域にある点$\mathrm{P}$を考える.$r=\mathrm{OP}$,$\theta=\angle \mathrm{POB}$とおくとき,以下の問いに答えよ.

(1)$r$を$\theta$を用いて表せ.
(2)$\displaystyle \lim_{\theta \to +0}r$を求めよ.
(3)点$\mathrm{P}$の座標を$(x,\ y)$で表すとき,$y$を$x$の式で表せ.
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{K}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,平面$\alpha$上の点$\mathrm{P}$で$\mathrm{GP}+\mathrm{PC}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.また,点$\mathrm{P}_0$は$\triangle \mathrm{OAB}$の周または内部にあることを示せ.
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
福島大学 国立 福島大学 2012年 第2問
座標平面上の3点$\mathrm{A}(9,\ 12)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(25,\ 0)$を頂点とする三角形$\mathrm{ABC}$および,三角形$\mathrm{ABC}$の内接円と外接円を考える.三角形$\mathrm{ABC}$の内接円は,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$とそれぞれ点$\mathrm{D},\ \mathrm{E},\ \mathrm{F}$で接する.また,三角形$\mathrm{ABC}$の内接円の中心と点$\mathrm{A}$を通る直線は,辺$\mathrm{BC}$と点$\mathrm{G}$で交わる.このとき,以下の問いに答えなさい.

(1)3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めなさい.
(2)線分$\mathrm{AE}$の長さを求めなさい.
(3)三角形$\mathrm{ABC}$の内接円の半径と中心の座標を求めなさい.
(4)点$\mathrm{G}$の座標を求めなさい.
(5)三角形$\mathrm{ABC}$の外接円の方程式を求めなさい.
長崎大学 国立 長崎大学 2012年 第1問
四面体$\mathrm{OABC}$において
\[ \mathrm{OA}=1, \mathrm{OB}=3, \mathrm{OC}=2, \angle \mathrm{AOB}=90^\circ, \angle \mathrm{AOC}=\angle \mathrm{BOC}=120^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$s,\ t,\ u$を実数として$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおく.このとき,$s+t+u=1$となることを示せ.
(2)(1)の$\overrightarrow{\mathrm{OH}}$が平面$\mathrm{ABC}$に垂直であるとき,$s,\ t,\ u$の値をそれぞれ求めよ.
(3)平面$\mathrm{OAB}$上に点$\mathrm{K}$をとり,$\overrightarrow{\mathrm{CK}}$が平面$\mathrm{OAB}$に垂直であるとする.このとき,$\overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{CK}}$の大きさと四面体$\mathrm{OABC}$の体積を求めよ.
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
東京農工大学 国立 東京農工大学 2012年 第1問
$a,\ b$は実数で$b>0$とする.行列
\[ A=\left( \begin{array}{cc}
a & b \\
-b & 1-a
\end{array} \right),\quad B=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \]
が$ABAB=E$を満たしている.ただし$E$は2次の単位行列とする.次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$n$を自然数とする.$A^n=E$を満たす最小の$n$を求めよ.
(3)座標平面上において,$a=2$のとき行列$A$の表す1次変換を$f$とおく.点$\mathrm{P}(1,\ 1)$が$f$によって移る点を$\mathrm{Q}$とし,$\mathrm{Q}$が$f$によって移る点を$\mathrm{R}$とする.このとき$\triangle \mathrm{PQR}$の面積$S$を求めよ.
電気通信大学 国立 電気通信大学 2012年 第1問
関数$\displaystyle f(x)=\frac{1}{x^2+1}$に対して,$xy$平面上の曲線$C:y=f(x)$を考える.このとき,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)曲線$C$の第$1$象限にある変曲点$\mathrm{P}$の座標を求めよ.
(3)変曲点$\mathrm{P}$における曲線$C$の接線$\ell$の方程式を求めよ.
(4)$\displaystyle x=\tan \theta \ \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とおく.このとき,不定積分
\[ I=\int \frac{dx}{x^2+1} \]
を$\theta$を用いて表せ.なお,不定積分の計算においては積分定数を省略してもよい.
(5)曲線$C$と接線$\ell$および$y$軸とで囲まれる部分の面積$S$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第1問
$k$は正の実数とする.$xy$平面において,$x$軸および2つの曲線
\[ C_1:y=k \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=\frac{1}{k}\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
で囲まれた図形の面積を$S(k)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\cos \alpha$および$\sin \alpha$を$k$を用いて表せ.
(2)$S(k)$を$k$を用いて表せ.
(3)$k$が$k>0$の範囲を動くときの$S(k)$の最大値を求めよ.
福井大学 国立 福井大学 2012年 第3問
$t$を$0 \leqq t \leqq \sqrt{3}$をみたす実数とし,座標空間内に点$\mathrm{P}(t,\ 0,\ \sqrt{3-t^2})$をとる.$\mathrm{P}$を通り$yz$平面に平行な平面を$\beta$とおく.3点$\mathrm{D}(0,\ 1,\ 0)$,$\mathrm{E}(0,\ -1,\ 0)$,$\mathrm{F}(-\sqrt{3},\ 0,\ 0)$に対し,$\beta$と直線$\mathrm{FD}$との交点を$\mathrm{Q}$,$\beta$と直線$\mathrm{FE}$との交点を$\mathrm{R}$とする.$\triangle \mathrm{PQR}$の面積を$S(t)$とおくとき,以下の問いに答えよ.ただし,$S(\sqrt{3})=0$とする.

(1)$S(t)$を$t$を用いて表せ.
(2)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$S(t)$の最大値を求めよ.
(3)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$\triangle \mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。