タグ「平面」の検索結果

121ページ目:全1904問中1201問~1210問を表示)
秋田大学 国立 秋田大学 2012年 第3問
$k$を実数とする.$xy$平面上の放物線$C:y=x^2+2x-2$と直線$\ell:y=kx$が異なる2点で交わるとし,交点の$x$座標をそれぞれ$\alpha,\ \beta$とする.ただし,$\alpha<\beta$である.$C$と$\ell$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$(\beta-\alpha)^2$を$k$の式で表せ.
(2)$\displaystyle \int_\alpha^\beta (x-\alpha)(x-\beta) \, dx=-\frac{1}{6}(\beta-\alpha)^3$であることを示せ.
(3)$S^2$の最小値とそのときの$k$の値を求めよ.
宮崎大学 国立 宮崎大学 2012年 第3問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第2問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第3問
座標平面上の放物線$y=x^2$と直線$y=kx+1 \ (k \text{は実数})$の2つの交点をP,Qとし,点Pの$x$座標を$\alpha$,点Qの$x$座標を$\beta \ (\alpha<\beta)$とする.このとき,次の各問に答えよ.

(1)$\alpha+\beta$および$\alpha\beta$の値を,$k$を用いて表せ.
(2)2点P,Qにおける放物線の接線をそれぞれ$\ell,\ m$とし,その交点をRとするとき,点Rの$x$座標を,$k$を用いて表せ.
(3)放物線と(2)の2つの接線$\ell,\ m$で囲まれる部分の面積を,$k$を用いて表せ.
宮崎大学 国立 宮崎大学 2012年 第2問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
香川大学 国立 香川大学 2012年 第5問
$a$を正の定数とし,座標平面上に異なる2点$\mathrm{A}(a,\ 0)$,$\mathrm{P}(x,\ 0)$をとる.線分の長さ$\mathrm{OP}$と$\mathrm{PA}$の比の値$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}$について,次の問に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}$を$x,\ a$を用いて表せ.
(2)$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}=\frac{1}{2}$のとき,$\mathrm{P}$の座標を求めよ.
(3)$\displaystyle f(x)=\frac{\mathrm{OP}}{\mathrm{PA}}$とするとき,関数$y=f(x)$のグラフの概形をかけ.
宮崎大学 国立 宮崎大学 2012年 第4問
座標平面上に,2つの放物線
\[ C_1:y=(x-t)^2+t,\quad C_2:y=-x^2+4 \]
がある.ただし,$t$は実数とする.このとき,次の各問に答えよ.

(1)$C_1,\ C_2$が異なる2点で交わるとき,$t$の値の範囲を求めよ.
(2)(1)のとき,$C_1$と$C_2$の2つの交点を結ぶ線分の中点の軌跡を図示せよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第2問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。