タグ「平面」の検索結果

120ページ目:全1904問中1191問~1200問を表示)
九州工業大学 国立 九州工業大学 2012年 第2問
Oを原点とする座標平面上に点A$(0,\ 1)$があり,点Aからの距離が4である点P$(x,\ y)$が$x>0$,$y>1$をみたすように動く.直線APが$x$軸の正の向きとなす角を$\theta$,点Pから$x$軸に垂線を下ろしたときの交点をQとする.以下の問いに答えよ.

(1)点Pの座標を$\theta$を用いて表せ.
(2)四角形OAPQの面積$S$を$\theta$を用いて表せ.
(3)(2)で求めた$S$が最大となるときの$\sin \theta$の値を求めよ.
(4)四角形OAPQを$x$軸のまわりに1回転させてできる立体の体積$V$を$\theta$を用いて表せ.
(5)(4)で求めた$V$が$\displaystyle \sin \theta=\frac{3}{4}$で最大となることを示せ.
九州工業大学 国立 九州工業大学 2012年 第3問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}_0(1,\ 1)$,$\mathrm{Q}_0(1,\ 0)$がある.ある$p \ (0<p<1)$に対して,点$\mathrm{P}_1(p,\ p)$,$\mathrm{Q}_1(p,\ 0)$を定め,さらに,自然数$n$について点$\mathrm{P}_{n+1}$,$\mathrm{Q}_{n+1}$を次のように定める.
\begin{itemize}
点$\mathrm{Q}_n$を通り直線$\mathrm{Q}_0 \mathrm{P}_1$と平行な直線と,直線$\mathrm{OP}_0$の交点を$\mathrm{P}_{n+1}$とする.
点$\mathrm{P}_{n+1}$を通り$y$軸と平行な直線と,$x$軸の交点を$\mathrm{Q}_{n+1}$とする.
\end{itemize}
また,$\triangle \mathrm{Q}_{n-1} \mathrm{P}_n \mathrm{Q}_n$の面積を$S_n$とするとき,以下の問いに答えよ.

(1)$S_1$を$p$を用いて表せ.
(2)点$\mathrm{Q}_{n-1}$の$x$座標を$q$とするとき,点$\mathrm{Q}_n$の$x$座標を$p,\ q$を用いて表せ.
(3)$S_n$を$p,\ n$を用いて表せ.
(4)$n$を定数として,$p$を$0<p<1$の範囲で動かすとき,$S_n$を最大にする$p$とそのときの$S_n$をそれぞれ$n$を用いて表せ.
(5)(4)で求めた$S_n$に対して,$\displaystyle \lim_{n \to \infty}nS_n$を求めよ.必要であれば,自然対数の底$e$について$\displaystyle \lim_{h \to 0}(1+h)^{\frac{1}{h}}=e$が成り立つことを用いてよい.

(図は省略)
岩手大学 国立 岩手大学 2012年 第1問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}_1(\sqrt{3},\ 1)$,$\mathrm{P}_2(\sqrt{3},\ 0)$をとる.点$\mathrm{P}_2$から線分$\mathrm{OP}_1$に引いた垂線と線分$\mathrm{OP}_1$との交点を$\mathrm{P}_3$とする.次に,点$\mathrm{P}_3$から線分$\mathrm{OP}_2$に引いた垂線と線分$\mathrm{OP}_2$との交点を$\mathrm{P}_4$とする.この操作を繰り返すことにより,点$\mathrm{P}_n$を定める.すなわち,点$\mathrm{P}_{n-1}$から$\mathrm{OP}_{n-2}$に引いた垂線と線分$\mathrm{OP}_{n-2}$との交点を$\mathrm{P}_n$とする.このとき,以下の問いに答えよ.

(1)三つの線分$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さをそれぞれ求めよ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$n$を用いて表せ.
(3)三つの三角形$\mathrm{OP}_1 \mathrm{P}_2$,$\mathrm{OP}_2 \mathrm{P}_3$,$\mathrm{OP}_3 \mathrm{P}_4$の面積をそれぞれ求めよ.
(4)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$n$を用いて表せ.
(5)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$a_n$とおき,
\[ S_n=a_1+a_2+\cdots +a_n \]
と定義する.$S_n$は$2\sqrt{3}$以上にならないことを証明せよ.
新潟大学 国立 新潟大学 2012年 第1問
$xy$平面上に放物線$C:y = -x^2$がある.$\mathrm{P}(a,\ b)$を$C$上の点とする.放物線$D : y =x^2+px+q$は点$\mathrm{P}$を通り,点$\mathrm{P}$における$C$の接線と$D$の接線は一致している.次の問いに答えよ.

(1)$b,\ p,\ q$をそれぞれ$a$で表せ.
(2)$a = 1$のとき,放物線$C$と$D$および$y$軸で囲まれた図形の面積を求めよ.
(3)点$\mathrm{P}(a,\ b)$が放物線$C$上を動くとき,放物線$D$の頂点の軌跡を求めよ.
新潟大学 国立 新潟大学 2012年 第3問
四面体$\mathrm{OABC}$において,$\mathrm{OA} \perp \mathrm{OB},\ \mathrm{OA} = 3,\ \mathrm{OB} = 4,\ \mathrm{OC} = 5$とする.$\triangle \mathrm{OAB}$の重心を$\mathrm{G}$とし,直線$\mathrm{CG}$は$\triangle \mathrm{OAB}$を含む平面に垂直とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{CG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{c}$および$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
新潟大学 国立 新潟大学 2012年 第3問
$a$を実数とし,$xy$平面上において,2つの放物線
\[ C:y=x^2,\quad D:x=y^2+a \]
を考える.次の問いに答えよ.

(1)$p,\ q$を実数として,直線$\ell:y=px+q$が$C$に接するとき,$q$を$p$で表せ.
(2)(1)において,直線$\ell$がさらに$D$にも接するとき,$a$を$p$で表せ.
(3)$C$と$D$の両方に接する直線の本数を,$a$の値によって場合分けして求めよ.
新潟大学 国立 新潟大学 2012年 第1問
平面上の点$\mathrm{P}(x,\ y)$を
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right) =\left( \begin{array}{cc}
1 & a \\
a & 2
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
によって定められる点$\mathrm{Q}(X,\ Y)$に移す移動を考える.ここで,$a$は実数とする.楕円$C:x^2+4y^2=1$が与えられているとき,次の問いに答えよ.

(1)点$\mathrm{P}(x,\ y)$が楕円$C$上を動くとき,点$\mathrm{Q}(X,\ Y)$は円$D:X^2+Y^2=1$上を動くとする.このとき$a$の値を求めよ.
(2)点$\mathrm{P}(x,\ y)$が楕円$C$上を動くとき,点$\mathrm{Q}(X,\ Y)$は直線$\ell:Y=pX+q$上を動くとする.ただし$p,\ q$は実数とする.このとき$a$および$p,\ q$の値を求めよ.
(3)(2)において,点$\mathrm{P}(x,\ y)$が楕円$C$上を動くとき,点$\mathrm{Q}(X,\ Y)$の$X$の最大値,最小値を求めよ.
秋田大学 国立 秋田大学 2012年 第3問
$f(x)=\sqrt{2x-x^2},\ g(x)=xf(x)$とする.次の問いに答えよ.

(1)$f(x)$の定義域を求めよ.
(2)$g(x)$の最大値と最小値を求めよ.
(3)$xy$平面上の曲線$y=f(x)$と曲線$y=g(x)$で囲まれた図形の面積を求めよ.
秋田大学 国立 秋田大学 2012年 第2問
平面上のベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$が,$|\overrightarrow{\mathrm{OA}}|=3,\ |\overrightarrow{\mathrm{OB}}|=6,\ |\overrightarrow{\mathrm{OC}}|=2$と
\[ \overrightarrow{\mathrm{OB}}=\frac{4}{3}\overrightarrow{\mathrm{OA}}+\frac{3}{2}\overrightarrow{\mathrm{OC}} \]
を満たす.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)ABを$2:1$に内分する点をPとするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$で表せ.
(3)$|\overrightarrow{\mathrm{OP}}|$を求めよ.
(4)点Qが
\[ \overrightarrow{\mathrm{OQ}}=\frac{5}{6}\overrightarrow{\mathrm{OA}}+\frac{17}{16}\overrightarrow{\mathrm{OC}} \]
を満たすとき,Qが四角形OABCの内部にあることを示せ.
秋田大学 国立 秋田大学 2012年 第3問
$f(x)=\sqrt{2x-x^2},\ g(x)=xf(x)$とする.次の問いに答えよ.

(1)$f(x)$の定義域を求めよ.
(2)$g(x)$の最大値と最小値を求めよ.
(3)$xy$平面上の曲線$y=f(x)$と曲線$y=g(x)$で囲まれた図形の面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。