タグ「平面」の検索結果

119ページ目:全1904問中1181問~1190問を表示)
九州工業大学 国立 九州工業大学 2012年 第2問
四面体OABCは$\displaystyle \text{OA}=1,\ \text{OB}=\sqrt{15},\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{AOC}=\frac{\pi}{3}$を満たしている.線分OAとOBを$s:1-s \ (0<s<1)$に内分する点をそれぞれP,Qとし,$\triangle$CPQの重心をGとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c},\ \angle \text{BOC}=\theta \ (0<\theta < \pi)$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$と$s$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OG}}$は平面ABCに垂直であるとする.

(3)$s$と$\cos \theta$の値を求めよ.
(4)線分OGとBCの長さ,および$\angle \text{BAC}$を求めよ.
(5)四面体OABCの体積$V$を求めよ.
弘前大学 国立 弘前大学 2012年 第3問
座標平面に点$\mathrm{E}(1,\ 0)$,$\mathrm{F}(1,\ 1)$,$\mathrm{F}^\prime(-5,\ 11)$がある.さらに点$\mathrm{E}^\prime$は第1象限にあり,$\mathrm{O}$を原点とするとき,三角形$\mathrm{OE}^\prime \mathrm{F}^\prime$は角$\mathrm{E}^\prime$が直角の二等辺三角形である.

(1)点$\mathrm{E}^\prime$の座標を求めよ.
(2)点$\mathrm{E}$を点$\mathrm{E}^\prime$に,点$\mathrm{F}$を点$\mathrm{F}^\prime$に移すような1次変換を$f$とする.$f$を表す行列を求めよ.
(3)座標平面に三角形$\mathrm{OPQ}$があり,(2)の1次変換$f$により点$\mathrm{P}$が点$\mathrm{P}^\prime$に,点$\mathrm{Q}$が点$\mathrm{Q}^\prime$に移るとする.三角形$\mathrm{OPQ}$と三角形$\mathrm{OP}^\prime \mathrm{Q}^\prime$は相似であることを示せ.
岩手大学 国立 岩手大学 2012年 第2問
座標空間内に3点A$(2,\ 2,\ 0)$,B$(0,\ 2,\ 2)$,C$(2,\ 0,\ 2)$がある.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.ただし,$0^\circ < \theta < 180^\circ$とする.
(2)$\triangle$ABCの面積を求めよ.
(3)原点Oから平面ABCに垂線をおろし,平面ABCとの交点をHとする.点Hは平面ABC上にあるから$\overrightarrow{\mathrm{OH}}=r\overrightarrow{\mathrm{OA}}+s\overrightarrow{\mathrm{OB}}+t\overrightarrow{\mathrm{OC}} \ (r+s+t=1)$と表すことができる.このとき,$r,\ s,\ t$を求めよ.
(4)四面体OABCの体積を求めよ.
(5)球$P$が四面体OABCのすべての面に接している.このとき,球$P$の半径を求めよ.
九州工業大学 国立 九州工業大学 2012年 第3問
$\alpha>1,\ x>0$とする.Oを原点とする座標平面上に3点A$(0,\ 1)$,B$(0,\ \alpha)$,P$(\sqrt{x},\ 0)$がある.次に答えよ.

(1)$\sin \angle \text{OPB}$と$\sin \angle \text{APB}$を$\alpha$と$x$を用いて表せ.
(2)$\sin \angle \text{APB}$を$x$の関数と考え,その関数を$f(x)$とおく.$f(x)$の最大値を$\alpha$を用いて表せ.
(3)(2)で求めた最大値が$\displaystyle \frac{1}{2}$となる$\alpha$を求めよ.
高知大学 国立 高知大学 2012年 第1問
次の問いに答えよ.

(1)不等式$x^2+y^2<1$の表す領域を$xy$平面上に図示せよ.
(2)不等式$|x|+|y|<2$の表す領域を$xy$平面上に図示せよ.
(3)実数$x,\ y$が$x^2+y^2<5$をみたすとき,$|x|<3$かつ$|y|<3$が成り立つことを示せ.
(4)任意の実数$x,\ y$に対して,$|x|+|y| \leqq 2\sqrt{x^2+y^2}$が成り立つことを示せ.
岩手大学 国立 岩手大学 2012年 第4問
\begin{spacing}{2}
行列$A=\left( \begin{array}{cc}
\displaystyle -\frac{1}{4} & \displaystyle -\frac{\sqrt{3}}{4} \\
\displaystyle \frac{\sqrt{3}}{4} & \displaystyle -\frac{1}{4}
\end{array} \right)$について,次の問いに答えよ.
\end{spacing}


(1)$A^2,\ A^3$を求めよ.
(2)$n$を自然数とし,$\biggl( \begin{array}{c}
x_n \\
y_n
\end{array} \biggr)=A^n \biggl( \begin{array}{c}
1 \\
0
\end{array} \biggr)$とするとき,$\biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr),\ \biggl( \begin{array}{c}
x_2 \\
y_2
\end{array} \biggr),\ \biggl( \begin{array}{c}
x_3 \\
y_3
\end{array} \biggr)$を求めよ.
(3)$xy$平面上の点P$_n$の座標を,(2)で定めた$(x_n,\ y_n)$とする.原点Oを中心とし,OP$_n$を半径とする円の面積を$S_n$とするとき,$S_1,\ S_2,\ S_3$を求めよ.
(4)(3)で定めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
岩手大学 国立 岩手大学 2012年 第6問
動点Pは,$xy$平面上の原点$(0,\ 0)$を出発し,$x$軸の正の方向,$x$軸の負の方向,$y$軸の正の方向,および$y$軸の負の方向のいずれかに,1秒ごとに1だけ進むものとする.その確率は,$x$軸の正の方向と負の方向にはそれぞれ$\displaystyle \frac{1}{5}$,$y$軸の正の方向には$\displaystyle \frac{2}{5}$,および$y$軸の負の方向には$\displaystyle \frac{1}{5}$である.このとき次の問いに答えよ.

(1)2秒後に動点Pが原点$(0,\ 0)$にある確率を求めよ.
(2)4秒後に動点Pが原点$(0,\ 0)$にある確率を求めよ.
(3)5秒後に動点Pが点$(2,\ 3)$にある確率を求めよ.
九州工業大学 国立 九州工業大学 2012年 第1問
関数$f(x)=kx^3-3kx \ (k>0)$が表す座標平面上の曲線を$C:y=f(x)$とする.曲線$C$上の2点P$(p,\ f(p))$,Q$(ap,\ f(ap))$における接線をそれぞれ$\ell_1,\ \ell_2$とする.ただし,$p>0,\ a \neq 1$とする.以下の問いに答えよ.

(1)点Pにおける接線$\ell_1$の方程式を$k,\ p$を用いて表せ.
(2)点Qにおける接線$\ell_2$が点Pを通るとき,$a$の値を求めよ.
(3)ある$k$に対して2つの接線$\ell_1,\ \ell_2$が点Pにおいて垂直に交わっているとき,$k$を$p$を用いて表せ.また,そのような$k$が存在する$p$の値の範囲を求めよ.
(4)ある$k$に対して2つの接線$\ell_1,\ \ell_2$が点Pにおいて垂直に交わっているとき,接線$\ell_2$と曲線$C$によって囲まれた図形の面積$S$を$p$を用いて表せ.
岐阜大学 国立 岐阜大学 2012年 第5問
$a$を正の実数とする.$t$を媒介変数として
\[ x(t)=\cos 2t,\ y(t)=\sin at \quad (-\pi \leqq t \leqq \pi) \]
で表される曲線$C$について,以下の問に答えよ.

(1)$a=1$とする.$C$を$x$と$y$の方程式で表し,その概形を$xy$平面上にかけ.
(2)$a=2$とする.$C$を$x$と$y$の方程式で表し,その概形を$xy$平面上にかけ.
(3)定積分
\[ \int_{-\pi}^\pi x(t)y^\prime(t) \, dt \]
の値を,$a \neq 2$と$a=2$のそれぞれの場合について求めよ.
(4)(3)で求めた定積分の値を$a$の関数と考えて$\displaystyle P(a)=\int_{-\pi}^\pi x(t)y^\prime(t) \, dt$とおく.$\displaystyle \lim_{a \to 2}P(a)$の値を求めよ.
岐阜大学 国立 岐阜大学 2012年 第5問
$a$を正の実数とする.$xy$平面上に放物線$C:y=x^2-2ax+a^2+1$と2つの直線$\ell_1:y=-2ax+6$,$\ell_2:y=2$がある.$\ell_1$と$\ell_2$の交点が不等式$y>x^2-2ax+a^2+1$の表す領域にあるとき,以下の問に答えよ.

(1)$a$のとりうる値の範囲を求めよ.
(2)$C$と$\ell_1$の2つの交点の$x$座標,$C$と$\ell_2$の2つの交点の$x$座標をそれぞれ求めよ.
(3)$C$と$\ell_1$の2つの交点間の距離を求めよ.
(4)(3)で求めた距離が最大となるときの$a$の値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。