タグ「平面」の検索結果

118ページ目:全1904問中1171問~1180問を表示)
防衛医科大学校 国立 防衛医科大学校 2012年 第4問
$n,\ r$は$n \geqq r$を満たす正の整数であるとし,$x,\ y$ともに$0$以上$n$以下の整数であるような座標平面上の点$(x,\ y)$の集合を$S$とする.また,曲線$x^2+y^2=r^2 \ (x \geqq 0,\ y \geqq 0)$,$x$軸,$y$軸によって囲まれる領域(境界を含む)を$D$とする.ここで,$S$からランダムに$1$点を選ぶ試行を考える.このとき,以下の問に答えよ.

(1)$n=10,\ r=5$のとき,選ばれた点が$D$内にある確率はいくらか.
(2)$[\,x\,]$は$x$を超えない最大の整数を表す記号である.直線$x=t$上の点で$D$に含まれる$S$の要素の個数をこの記号を用いて表せ.ここで,$t$は0以上$r$以下の整数とする.
(3)$r=n$とし,選ばれた点が$D$内に含まれる確率を$P(n)$とする.このとき,極限値$\displaystyle \lim_{n \to \infty}P(n)$を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$T$は原点の回りの回転移動と原点中心の拡大(相似変換)との合成変換であることを示せ.
(2)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の2倍となる$c$の値を求めよ.
(3)$c=2$とする.楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.$E$が$E^\prime$の内部にあることを示し,$E^\prime$の内部にあり$E$の外部にある部分の面積を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の$k$倍($k \geqq 1$)となる$c$の値を求めよ.
(2)楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.楕円$E^\prime$上のすべての点が楕円$E$の周上または外部にあるための,$c$の条件を求めよ.
熊本大学 国立 熊本大学 2012年 第4問
一辺の長さが$\sqrt{2}$の正四面体OABCにおいて,辺ABの中点をM,辺BCを$1:2$に内分する点をN,辺OCの中点をLとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.以下の問いに答えよ.

(1)3点L,M,Nを通る平面と直線OAの交点をDとする.$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)辺OBの中点Kから直線DN上の点Pへ垂線KPを引く.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
高知大学 国立 高知大学 2012年 第1問
次の問いに答えよ.

(1)不等式$x^2+y^2<1$の表す領域を$xy$平面上に図示せよ.
(2)不等式$|x|+|y|<2$の表す領域を$xy$平面上に図示せよ.
(3)実数$x,\ y$が$x^2+y^2<5$をみたすとき,$|x|<3$かつ$|y|<3$が成り立つことを示せ.
(4)任意の実数$x,\ y$に対して,$|x|+|y| \leqq 2\sqrt{x^2+y^2}$が成り立つことを示せ.
弘前大学 国立 弘前大学 2012年 第3問
関数$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}x^2+2x$について次の問いに答えよ.

(1)$y=f(x)$のグラフの概形をかけ.
(2)実数$a$に対して,$a \leqq x \leqq a+2$のときの$f(x)$の最小値を$g(a)$とおく.関数$b=g(a)$のグラフの概形を$ab$平面上にかけ.
千葉大学 国立 千葉大学 2012年 第11問
$xy$平面において,長さ$1$の線分$\mathrm{AB}$を点$\mathrm{A}$が原点,点$\mathrm{B}$が点$(1,\ 0)$に重なるように置く.点$\mathrm{A}$を$y$軸に沿って点$(0,\ 1)$まで移動させ,線分$\mathrm{AB}$の長さを$1$に保ったまま点$\mathrm{B}$を$x$軸に沿って原点まで移動させる.このとき線分$\mathrm{AB}$が通る領域を$D$とする.$0 \leqq x \leqq 1$となる実数$x$に対して,点$(x,\ y)$が領域$D$に含まれるような$y$の最大値を$f(x)$とする.

(1)$f(x)$を$x$の式で表せ.
(2)領域$D$を$x$軸を中心に回転させた立体の体積$V$を求めよ.
弘前大学 国立 弘前大学 2012年 第5問
$f(\theta)=\cos 2\theta + 2\cos \theta,\ g(\theta)=\sin 2\theta+2\sin \theta$とする.

(1)$0 \leqq \theta \leqq \pi$の範囲において,関数$f(\theta),\ g(\theta)$の増減を調べよ.
(2)$xy$平面上の曲線$x=f(\theta),\ y=g(\theta) \ (-\pi \leqq \theta \leqq \pi)$で囲まれる図形の面積を求めよ.
弘前大学 国立 弘前大学 2012年 第6問
$xy$平面上の楕円$4x^2+9y^2=36$を$C$とする.

(1)直線$y=ax+b$が楕円$C$に接するための条件を$a$と$b$の式で表せ.
(2)楕円$C$の外部の点$\mathrm{P}$から$C$に引いた$2$本の接線が直交するような点$\mathrm{P}$の軌跡を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第2問
$a^2+b^2=1$を満たす正の実数$a,\ b$の組$(a,\ b)$の全体を$S$とする.$S$に含まれる$(a,\ b)$に対し,$xyz$空間内に3点P$(a,\ b,\ b)$,Q$(-a,\ b,\ b)$,R$(0,\ 0,\ b)$をとる.また原点をOとする.このとき以下の各問いに答えよ.

(1)三角形OPQを$x$軸のまわりに1回転してできる立体を$F_1$とする.$(a,\ b)$が$S$の中を動くとき,$F_1$の体積の最大値を求めよ.
(2)三角形PQRを$x$軸のまわりに1回転してできる立体を$F_2$とする.$\displaystyle a=b=\frac{1}{\sqrt{2}}$のとき,$F_2$の$xy$平面による切り口の周を$xy$平面上に図示せよ.
(3)三角形OPRを$x$軸のまわりに1回転してできる立体を$F_3$とする.$(a,\ b)$が$S$の中を動くとき,$F_3$の体積の最大値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。