タグ「平面」の検索結果

113ページ目:全1904問中1121問~1130問を表示)
福島県立医科大学 公立 福島県立医科大学 2013年 第2問
一辺の長さが$8$である正四面体$\mathrm{OABC}$の辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上に点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があって,$\mathrm{AD}=\mathrm{OE}=\mathrm{OF}=5$を満たしている.$\triangle \mathrm{DEF}$の重心$\mathrm{G}$を通り$\triangle \mathrm{DEF}$を含む平面に垂直な直線が,$\triangle \mathrm{ABC}$を含む平面と交わる点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{DEFH}$の体積を求めよ.
福島県立医科大学 公立 福島県立医科大学 2013年 第3問
$\mathrm{A}(1,\ 1,\ 0)$,$\mathrm{B}(-1,\ 1,\ 0)$,$\mathrm{C}(-1,\ -1,\ 0)$,$\mathrm{D}(1,\ -1,\ 0)$,$\mathrm{G}(0,\ 0,\ \sqrt{2})$を$xyz$空間の点とする.正方形$\mathrm{ABCD}$を底面とし,$\mathrm{G}$を頂点とする四角すいの内部の点$\mathrm{P}(x,\ y,\ z)$で,$x^2+y^2 \leqq 1$を満たす点を集めた図形を$V$とする.また,平面$z=a$で$V$を切断したときの切断面を$S_a$とする.ただし,$0<a<\sqrt{2}$である.以下の問いに答えよ.

(1)$S_a$が正方形となる$a$の最小値を$z_0$とする.$z_0$の値を求めよ.
(2)$(1)$の$z_0$について,$0<a<z_0$とする.$\displaystyle \cos \theta=1-\frac{a}{\sqrt{2}}$を満たす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$を用いて$S_a$の面積を表せ.
(3)$V$の体積を求めよ.
京都府立大学 公立 京都府立大学 2013年 第1問
$xy$平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(4,\ 3)$を中心とする半径$1$の円$D$がある.円$C$上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,円$D$上に点$\mathrm{P}$がある.$2$つの直線$\mathrm{AP}$,$\mathrm{BP}$は円$C$の接線とする.直線$\mathrm{AB}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とするとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$(5,\ 3)$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)$(1)$のとき,点$\mathrm{Q}$の座標を求めよ.
(3)点$\mathrm{P}$が円$D$の円周上を動くとき,点$\mathrm{Q}$の軌跡が点$\displaystyle \left( \frac{1}{6},\ \frac{1}{8} \right)$を中心とする半径$\displaystyle \frac{1}{24}$の円となることを示せ.
東京大学 国立 東京大学 2012年 第1問
次の連立不等式で定まる座標平面上の領域$D$を考える.
\[ x^2+ (y-1)^2 \leqq 1, \quad x \geqq \frac{\sqrt{2}}{3} \]
直線$\ell$は原点を通り,$D$との共通部分が線分となるものとする.その線分の長さ$L$の最大値を求めよ.また,$L$が最大値をとるとき,$x$軸と$\ell$のなす角$\theta\ (0<\theta<\displaystyle\frac{\pi}{2})$の余弦$\cos \theta$を求めよ.
東京大学 国立 東京大学 2012年 第3問
座標平面上で2つの不等式
\[ y \geqq \frac{1}{2}x^2,\quad \frac{x^2}{4}+4y^2 \leqq \frac{1}{8} \]
によって定まる領域を$S$とする.$S$を$x$軸のまわりに回転してできる立体の体積を$V_1$とし,$y$軸のまわりに回転してできる立体の体積を$V_2$とする.

(1)$V_1$と$V_2$の値を求めよ.
(2)$\displaystyle\frac{V_2}{V_1}$の値と1の大小を判定せよ.
京都大学 国立 京都大学 2012年 第5問
次の条件($*$)を満たす正の実数の組$(a,\ b)$の範囲を求め,座標平面上に図示せよ.\\
($*$) \; $\cos a\theta = \cos b\theta$かつ$0<\theta \leqq \pi$となる$\theta$がちょうど$1$つある.
東京大学 国立 東京大学 2012年 第5問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$が次の条件(D)を満たすとする.

\mon[(D)] $A$の成分$a$,$b$,$c$,$d$は整数である.また,平面上の4点$(0,\ 0)$,$(a,\ b)$,$(a+c,\ b+d)$,$(c,\ d)$は,面積1の平行四辺形の4つの頂点をなす.

$B=\biggl( \begin{array}{cc}
1 & 1 \\
0 & 1
\end{array} \biggr)$とおく.次の問いに答えよ.

(1)行列$BA$と$B^{-1}A$も条件(D)を満たすことを示せ.
(2)$c=0$ならば,$A$に$B$,$B^{-1}$のどちらかを左から次々にかけることにより,4個の行列$\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array} \biggr)$のどれかにできることを示せ.
(3)$|\,a\,| \geqq |\,c\,| >0$とする.$BA$,$B^{-1}A$に少なくともどちらか一方は,それを$\biggl( \begin{array}{cc}
x & y \\
z & w
\end{array} \biggr)$とすると
\[ |\,x\,|+|\,z\,| < |\,a\,|+|\,c\,| \]
を満たすことを示せ.
北海道大学 国立 北海道大学 2012年 第3問
$xy$平面上に$3$点$\mathrm{A}(a,\ b)$,$\mathrm{B}(a+3,\ b)$,$\mathrm{C}(a+1,\ b+2)$がある.不等式$y \geqq x^2$の表す領域を$D$,不等式$y \leqq x^2$の表す領域を$E$とする.

(1)点$\mathrm{C}$が領域$D$に含まれ,点$\mathrm{A}$と点$\mathrm{B}$が領域$E$に含まれるような$a,\ b$の条件を連立不等式で表せ.
(2)$(1)$で求めた条件を満たす点$(a,\ b)$の領域$F$を$ab$平面上に図示せよ.
(3)$(2)$で求めた領域$F$の面積を求めよ.
一橋大学 国立 一橋大学 2012年 第3問
定数$a,\ b,\ c,\ d$に対して,平面上の点$(p,\ q)$を点$(ap+bq,\ cp+dq)$に移す操作を考える.ただし,$(a,\ b,\ c,\ d) \neq (1,\ 0,\ 0,\ 1)$である.$k$を0でない定数とする.放物線$C:y=x^2-x+k$上のすべての点は,この操作によって$C$上に移る.

(1)$a,\ b,\ c,\ d$を求めよ.
(2)$C$上の点Aにおける$C$の接線と,点Aをこの操作によって移した点A$^\prime$における$C$の接線は,原点で直交する.このときの$k$の値および点Aの座標をすべて求めよ.
一橋大学 国立 一橋大学 2012年 第4問
$xyz$空間内の平面$z=2$上に点Pがあり,平面$z=1$上に点Qがある.直線PQと$xy$平面の交点をRとする.

(1)P$(0,\ 0,\ 2)$とする.点Qが平面$z=1$上で点$(0,\ 0,\ 1)$を中心とする半径1の円周上を動くとき,点Rの軌跡の方程式を求めよ.
(2)平面$z=1$上に4点A$(1,\ 1,\ 1)$,B$(1,\ -1,\ 1)$,C$(-1,\ -1,\ 1)$,D$(-1,\ 1,\ 1)$をとる.点Pが平面$z=2$上で点$(0,\ 0,\ 2)$を中心とする半径1の円周上を動き,点Qが正方形ABCDの周上を動くとき,点Rが動きうる領域を$xy$平面上に図示し,その面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。