タグ「平面」の検索結果

108ページ目:全1904問中1071問~1080問を表示)
早稲田大学 私立 早稲田大学 2013年 第5問
空間内に平面$P$がある.空間内の図形$A$に対し,$A$の各点から$P$に下ろした垂線と$P$との交点の全体を,$A$の$P$への正射影とよぶ.次の問に答えよ.

(1)平面$Q$が平面$P$と角$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$で交わっているとする.すなわち,$P$と$Q$の交線に垂直な平面で$P,\ Q$を切ってできる$2$直線のなす角が$\theta$であるとする.$Q$上の長さ$1$の線分の$P$への正射影の長さの最大値と最小値を求めよ.
(2)$(1)$の$Q$を考える.$Q$上の$1$辺の長さが$1$である正三角形の$P$への正射影の面積を求めよ.
(3)$1$辺の長さが$1$である正四面体$T$の$P$への正射影$T^\prime$はどんな形か.また,$T^\prime$の面積の最大値を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)等差数列$\{a_n\}$において,初項から第$10$項までの和が$-8$,初項から第$21$項までの和が$14$である.この数列の初項$a_1$は$[ア]$で,公差は$[イ]$である.
(2)$2 \log_3 4+\log_9 5-\log_3 8=\log_3 x$の解は$x=[ウ]$である.

(3)$\displaystyle x=\frac{1}{\sqrt{7}-\sqrt{5}},\ y=\frac{1}{\sqrt{7}+\sqrt{5}}$のとき,$x^3+y^3$の値は$[エ]$である.

(4)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$となる自然数の組$(x,\ y)$で$x \geqq y$を満たすものをすべてあげると$(x,\ y)=[オ]$である.
(5)正の数$k$と角$\theta$に対して,$\sin \theta,\ \cos \theta$が$2$次方程式$5x^2-kx+2=0$の解となるような$k$の値は$[カ]$である.
(6)三角形$\mathrm{ABC}$において,$\displaystyle \frac{\sin A}{\sqrt{2}}=\frac{\sin B}{2}=\frac{\sin C}{1+\sqrt{3}}$であるとき,$\cos C$の値は$[キ]$である.
(7)整式$P(x)$を$2x^2+9x-5$で割ると余りが$3x+5$であり,$x-2$で割ると余りが$-3$であるとき,$P(x)$を$x^2+3x-10$で割ると,余りは$[ク]$である.
(8)座標空間内に$4$点$\mathrm{A}(-1,\ 2,\ 1)$,$\mathrm{B}(-1,\ -1,\ 4)$,$\mathrm{C}(1,\ -1,\ 1)$,$\mathrm{D}(x,\ y,\ z)$がある.これら$4$点が同一平面上にあり,かつこれらを頂点とする四角形がひし形であるのは,$(x,\ y,\ z)=[ケ]$のときである.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
東京医科大学 私立 東京医科大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)座標平面上の放物線$C:y=a(x-b)^2$($a,\ b$は正の定数)が点$\displaystyle \mathrm{A} \left( \frac{4}{5},\ \frac{3}{5} \right)$を通り,点$\mathrm{A}$における$C$の法線が原点$\mathrm{O}(0,\ 0)$を通るとき,$\displaystyle a=\frac{[アイ]}{[ウエ]}$,$\displaystyle b=\frac{[オカ]}{[キク]}$である.
(2)不等式
\[ \log (n+9)-\log (n+8)<\frac{1}{100} \]
をみたす最小の正の整数$n$の値は$n=[ケコ]$である.ただし,対数は自然対数とする.
東京医科大学 私立 東京医科大学 2013年 第3問
座標平面上の楕円$\displaystyle C:\frac{(x-a)^2}{b}+\frac{(y-c)^2}{2}=1$($a,\ b,\ c$は正の定数)は$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 2)$を通るとする.

(1)定数$a,\ b,\ c$は$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)点$\mathrm{P}$が楕円$C$上を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AP}}$の最大値を$M$とすれば$\displaystyle M=\frac{[エオ]}{[カ]}$である.
東京医科大学 私立 東京医科大学 2013年 第4問
関数$\displaystyle f(x)=\frac{1+4x}{1+\sqrt{x}} (x \geqq 0)$を考える.

(1)関数$f(x)$は$\displaystyle x=\frac{[ア]}{[イ]}-\sqrt{[ウ]}$のとき最小値$[エ] \sqrt{[オ]}-[カ]$をとる.
(2)座標平面上の曲線$C:y=f(x) (x \geqq 0)$と$x$軸,$y$軸および直線$x=1$とで囲まれた部分の面積を$S$とすれば
\[ S=\frac{[キク]}{[ケ]}-[コサ] \log 2 \]
である.ただし,対数は自然対数とする.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2013年 第2問
$xy$平面上の三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.頂点$\mathrm{A}$の座標は$(5,\ 10)$で,直線$\mathrm{GB}$,$\mathrm{GC}$の方程式はそれぞれ$9x-10y=0$,$x-6y+33=0$である.このとき頂点$\mathrm{B}$,$\mathrm{C}$それぞれの座標を求めよ.
愛知学院大学 私立 愛知学院大学 2013年 第4問
次の問いに答えなさい.

(1)座標平面上の原点に点$\mathrm{P}$がある.さいころを投げ,$1$または$2$がでたとき,$x$軸の正の方向へ$1$動き,出た目が$3,\ 4,\ 5,\ 6$のとき,$y$軸の正の方向に$1$動くとする.さいころを$5$回投げたとき,点$\mathrm{P}$が$(3,\ 2)$の位置にいる確率を求めなさい.
(2)$52$枚のトランプから$2$枚を引いたとき,$2$枚ともハートであるまたは$2$枚とも絵札でない確率を求めなさい.
愛知学院大学 私立 愛知学院大学 2013年 第4問
$xy$平面上に$3$点$\mathrm{A}(-3,\ 0)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(c,\ 0) (c>0)$がある.

(1)$\mathrm{PA}:\mathrm{PB}=2:1$となる点$\mathrm{P}$は,点$([ア],\ [イ])$を中心とする半径$[ウ]$の円を描く.
(2)$\mathrm{PA}:\mathrm{PB}:\mathrm{PC}=4:2:1$となるような点$\mathrm{P}$が存在するのは$\displaystyle \frac{[エ]}{[オ]} \leqq c \leqq \frac{[カ]}{[キ]}$のときである.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第2問
以下の問いに答えなさい.

(1)図の直角三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{AC}=1$とする.また,辺$\mathrm{BC}$を二等分する点を$\mathrm{D}$とし,$\angle \mathrm{BAD}$を$\alpha$,$\angle \mathrm{DAC}$を$\beta$とする.このとき$\sin \alpha$及び$\sin \beta$の値を求めなさい.

\begin{zahyou*}[ul=1.5mm](0,42)(0,25)%
\tenretu*{A(35,23)n;B(5,5)w;C(35,5)e;D(20,5)s}%
{\thicklines
\Kakukigou\B\A\D<Hankei=12mm,moziiti=16mm>{$\alpha$}%
\Kakukigou<2>\D\A\C<Hankei=8mm,moziiti=12mm>{$\beta$}%
\Drawline{\A\B\C\A}%
\Drawline{\A\D}%
\put(33,5){\drawline(0,0)(0,2)}%
\put(33,7){\drawline(0,0)(2,0)}%
}
\tenretu*{D(36,23);E(2,3);F(36,3);G(10,5.5);H(20,2)}%
\emathPut\D{$\mathrm{A}$}
\emathPut\E{$\mathrm{B}$}
\emathPut\F{$\mathrm{C}$}
\emathPut\H{$\mathrm{D}$}
\end{zahyou*}

(2)半径$r (>0)$の円の円周の長さを$L$とし,面積を$S$とする.また,半径$r$の球の体積を$V$とする.このとき$x$についての$2$次方程式
\[ Vx^2+Sx-L=0 \]
の実数解がいくつあるか求めなさい.
(3)長さ$1$メートルの細いひもを$1$本だけ余すところなく用いて平面上に正三角形を$1$つ作ったとき,その正三角形の面積を求めなさい.また,同様にして正方形を$1$つ作ったとき,その正方形の面積を求めなさい.さらに,同様にして円を$1$つ作ったとき,その円の面積を求めなさい.ただし円周率を$\pi$とする.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。