タグ「平面」の検索結果

104ページ目:全1904問中1031問~1040問を表示)
北海道医療大学 私立 北海道医療大学 2013年 第1問
以下の問に答えよ.

(1)関数$y=2x^2-3x+2 (-1 \leqq x \leqq 2)$の最大値を$A$,最小値を$B$とするとき,$A,\ B$の値を求めよ.
(2)不等式$\displaystyle |x-1|<-\frac{1}{4}x+\frac{3}{2}$の解は$A<x<B$となる.$A,\ B$の値を求めよ.
(3)座標平面上の$3$点$\mathrm{A}(4,\ 5)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(6,\ 2)$を頂点とする$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線を$\mathrm{AH}$とするとき,$\triangle \mathrm{ABH}$の面積を求めよ.
(4)$2$つの放物線$\displaystyle y=\frac{1}{2}x^2-2x+\frac{5}{2}$と$\displaystyle y=-\frac{1}{2}x^2+2kx-\frac{3}{2}k$が共有点を持たないような定数$k$の値の範囲は,$A<k<B$となる.$A,\ B$の値を求めよ.

(5)$\displaystyle \frac{\sqrt{17}+3}{\sqrt{17}-3}$の小数部分の値を求めよ.
北海道医療大学 私立 北海道医療大学 2013年 第1問
以下の問に答えよ.

(1)関数$y=2x^2-3x+2 (-1 \leqq x \leqq 2)$の最大値を$A$,最小値を$B$とするとき,$A,\ B$の値を求めよ.
(2)不等式$\displaystyle |x-1|<-\frac{1}{4}x+\frac{3}{2}$の解は$A<x<B$となる.$A,\ B$の値を求めよ.
(3)座標平面上の$3$点$\mathrm{A}(4,\ 5)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(6,\ 2)$を頂点とする$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線を$\mathrm{AH}$とするとき,$\triangle \mathrm{ABH}$の面積を求めよ.
(4)$2$つの放物線$\displaystyle y=\frac{1}{2}x^2-2x+\frac{5}{2}$と$\displaystyle y=-\frac{1}{2}x^2+2kx-\frac{3}{2}k$が共有点を持たないような定数$k$の値の範囲は,$A<k<B$となる.$A,\ B$の値を求めよ.

(5)$\displaystyle \frac{\sqrt{17}+3}{\sqrt{17}-3}$の小数部分の値を求めよ.
千葉工業大学 私立 千葉工業大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に,放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(2,\ 8)$を通る直線$\ell:y=t(x-2)+8$(ただし,$t$は定数)と$C$との$2$つの交点を結ぶ線分の中点を$\mathrm{M}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$C$と$\ell$との$2$つの交点の$x$座標を$\alpha,\ \beta$とすると,$\alpha+\beta=[ア] t$である.$X,\ Y$を$t$を用いて表すと,$X=[イ] t$,$Y=[ウ] t^2-[エ] t+[オ]$である.
(2)$\mathrm{M}$が直線$\mathrm{OA}$上の点であるような$t$の値は小さい方から順に$[カ]$,$[キ]$である.
(3)$t$が$[カ]$から$[キ]$まで変化するときの$\mathrm{M}$の軌跡は,放物線
\[ D:y=\frac{[ク]}{[ケ]}x^2-x+[コ] \]
の$[サ] \leqq x \leqq [シ]$の部分である.
(4)$[カ] \leqq t \leqq [キ]$において,直線$\mathrm{OM}$が$D$に接するとき,$X=[ス]$である.また,$t$が$[カ]$から$[キ]$まで変化するとき,線分$\mathrm{OM}$が通過する部分の面積は$\displaystyle \frac{[セソ]}{[タ]}$である.
東京電機大学 私立 東京電機大学 2013年 第3問
$t$を正の実数とする.座標平面上で点$\mathrm{A}(1,\ 1)$を中心とし点$\mathrm{B}(1,\ 0)$を通る円と,直線$y=tx$との$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,次の問に答えよ.

(1)点$\mathrm{A}$と直線$y=tx$との距離を$t$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(3)$\triangle \mathrm{BPQ}$の面積$S$を$t$を用いて表せ.
(4)$(3)$の面積$S$が最大になるときの$t$の値を求めよ.
北里大学 私立 北里大学 2013年 第3問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{F}$とし,三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.また,辺$\mathrm{AO}$の点$\mathrm{O}$を越える延長上に$3 \overrightarrow{\mathrm{AO}}=\overrightarrow{\mathrm{AH}}$となるように点$\mathrm{H}$をとり,直線$\mathrm{HF}$と平面$\mathrm{DEG}$の交点を$\mathrm{L}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.

(1)$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{DG}}$の内積は$[コ]$である.
(2)$\overrightarrow{\mathrm{HF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{HF}}=[サ] \overrightarrow{a}+[シ] \overrightarrow{b}$と表される.
(3)$\overrightarrow{\mathrm{LF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{LF}}=[ス] \overrightarrow{a}+[セ] \overrightarrow{b}$と表される.
松山大学 私立 松山大学 2013年 第4問
座標平面上において,$2$点$\mathrm{A}(-2,\ 5)$,$\mathrm{B}(7,\ -1)$を通る直線を$\ell$とする.また,点$\mathrm{P}$は放物線$y=-3x^2$上を動く.

(1)線分$\mathrm{AB}$の長さは$[ア] \sqrt{[イウ]}$である.

(2)直線$\ell$の方程式は$\displaystyle y=-\frac{[エ]}{[オ]}x+\frac{[カキ]}{[ク]}$である.

(3)$\triangle \mathrm{ABP}$の面積の最小値は$\displaystyle \frac{[ケコ]}{[サ]}$であり,このとき点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[シ]}{[ス]},\ \frac{[セソ]}{[タチ]} \right)$である.
同志社大学 私立 同志社大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面に点$\mathrm{A}(2,\ 1)$と点$\mathrm{B}(1,\ -2)$をとる.実数$\theta (0 \leqq \theta<2\pi)$に対して点$\mathrm{P}$は$\overrightarrow{\mathrm{OP}}=(\cos \theta) \overrightarrow{\mathrm{OA}}+(1-\sin \theta) \overrightarrow{\mathrm{OB}}$を満たすものとする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
(2)$\theta$が$0 \leqq \theta<2\pi$を満たす値をとって変化するとき,点$\mathrm{P}$の軌跡を求めよ.
(3)内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$の最大値と,そのときの$\theta$の値を求めよ.
同志社大学 私立 同志社大学 2013年 第3問
$\alpha$は$\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2}$を満たす実数とする.$xy$平面において,曲線$\displaystyle C:y=\cos^3 x$ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$,直線$\ell:y=\cos^3 \alpha$および$y$軸で囲まれた図形を$D_1$とする.また,曲線$C$,直線$\ell$および直線$\displaystyle x=\frac{\pi}{2}$で囲まれた図形を$D_2$とする.次の問いに答えよ.

(1)$D_1$の面積$S_1$と$D_2$の面積$S_2$が等しくなるとき,$\cos \alpha$の値を求めよ.
(2)$S_1$と$S_2$の和の最小値を求めよ.
同志社大学 私立 同志社大学 2013年 第4問
$xy$平面において,曲線$C:y=\log x$上に$2$点$\mathrm{A}(a,\ \log a)$と$\mathrm{B}(a+h,\ \log (a+h))$ $(h \neq 0)$をとる.点$\mathrm{A}$における$C$の法線と点$\mathrm{B}$における$C$の法線の交点を$\mathrm{D}(\alpha,\ \beta)$とする.次の問いに答えよ.

(1)点$\mathrm{A}$における法線の方程式を求めよ.
(2)$\alpha$と$\beta$をそれぞれ$a$と$h$を用いて表せ.
(3)$\displaystyle p=\lim_{h \to 0} \alpha$と$\displaystyle q=\lim_{h \to 0} \beta$とする.$p$と$q$をそれぞれ$a$を用いて表せ.
(4)点$\mathrm{E}$の座標を$(p,\ q)$とする.線分$\mathrm{AE}$の長さを最小にする$a$の値と,そのときの線分$\mathrm{AE}$の長さを求めよ.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a,\ b$を定数とする.座標平面において,$x^2+y^2+ax+by=0$は中心を点$([ ],\ [ ])$とする半径$[ ]$の円の方程式である.サイコロを$2$度投げ,最初に出た目を$a$とし,次に出た目を$b$とする.この円の内部の面積が$4 \pi$以下である確率は$[ ]$である.また,この円が直線$x+y=a-b$と異なる$2$点で交わる確率は$[ ]$である.
(2)$2013$を素因数分解すると$[ ]$である.$x=[ ]$,$y=0$は,方程式$11x+25y=2013$をみたす.$x,\ y$を共に$0$以上の整数とするとき,方程式$11x+25y=2013$をみたす$(x,\ y)$の組は全部で$[ ]$組あり,それらの中で$x^2+y^2$の値が最大になるのは$x=[ ]$,$y=[ ]$のときである.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。