タグ「平行」の検索結果

5ページ目:全255問中41問~50問を表示)
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
四面体$\mathrm{ABCD}$がある.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$は同一平面上にあり,四面体のどの頂点とも異なるとする.このとき下記の設問に答えよ.

(1)$\mathrm{PQ}$と$\mathrm{RS}$が平行であるとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
(2)$\mathrm{PQ}$と$\mathrm{RS}$が平行でないとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
北海道大学 国立 北海道大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-(x-1)^2 \]
がある.$a$は$0$でない実数とし,$C_1$上の$2$点$\mathrm{P}(a,\ a^2)$,$\mathrm{Q}(-2a,\ 4a^2)$を通る直線と平行な$C_1$の接線を$\ell$とする.

(1)$\ell$の方程式を$a$で表せ.
(2)$C_2$と$\ell$が異なる$2$つの共有点をもつような$a$の値の範囲を求めよ.
(3)$C_2$と$\ell$が異なる$2$つの共有点$\mathrm{R}$,$\mathrm{S}$をもつとする.線分$\mathrm{PQ}$の長さと線分$\mathrm{RS}$の長さが等しくなるとき,$a$の値を求めよ.
一橋大学 国立 一橋大学 2015年 第3問
$n$を$4$以上の整数とする.正$n$角形の$2$つの頂点を無作為に選び,それらを通る直線を$\ell$とする.さらに,残りの$n-2$個の頂点から$2$つの頂点を無作為に選び,それらを通る直線を$m$とする.直線$\ell$と$m$が平行になる確率を求めよ.
東京工業大学 国立 東京工業大学 2015年 第4問
$xy$平面上を運動する点$\mathrm{P}$の時刻$t (t>0)$における座標$(x,\ y)$が
\[ x=t^2 \cos t,\quad y=t^2 \sin t \]
で表されている.原点を$\mathrm{O}$とし,時刻$t$における$\mathrm{P}$の速度ベクトルを$\overrightarrow{v}$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\theta (t)$とするとき,極限値$\displaystyle \lim_{t \to \infty} \theta (t)$を求めよ.
(2)$\overrightarrow{v}$が$y$軸に平行になるような$t (t>0)$のうち,最も小さいものを$t_1$,次に小さいものを$t_2$とする.このとき,不等式$t_2-t_1<\pi$を示せ.
琉球大学 国立 琉球大学 2015年 第2問
頂点が点$\mathrm{A}(0,\ 4)$で,点$\mathrm{B}(2,\ 0)$を通る放物線を考える.次の問いに答えよ.

(1)この放物線をグラフとする$2$次関数を求めよ.
(2)この放物線上にあり,$x$座標が$2a (a>0)$である点を$\mathrm{C}$とする.この放物線と$x$軸との交点で,点$\mathrm{B}$と異なる点を$\mathrm{D}$とする.点$\mathrm{C}$における放物線の接線$\ell_1$と点$\mathrm{D}$における放物線の接線$\ell_2$との交点$\mathrm{E}$の座標を,$a$を使って表せ.
(3)この放物線と直線$\ell_2$,および点$\mathrm{E}$を通り$y$軸に平行な直線で囲まれた部分の面積を求めよ.
九州大学 国立 九州大学 2015年 第3問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球がある.下の概略図のように,$y$軸の負の方向から仰角$\displaystyle \frac{\pi}{6}$で太陽光線が当たっている.この太陽光線はベクトル$(0,\ \sqrt{3},\ -1)$に平行である.球は光を通さないものとするとき,以下の問いに答えよ.
(図は省略)

(1)球の$z \geqq 0$の部分が$xy$平面上につくる影を考える.$k$を$-1<k<1$を満たす実数とするとき,$xy$平面上の直線$x=k$において,球の外で光が当たらない部分の$y$座標の範囲を$k$を用いて表せ.
(2)$xy$平面上において,球の外で光が当たらない部分の面積を求めよ.
(3)$z \geqq 0$において,球の外で光が当たらない部分の体積を求めよ.
神戸大学 国立 神戸大学 2015年 第2問
座標平面上の楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$C$とする.$a>2$,$0<\theta<\pi$とし,$x$軸上の点$\mathrm{A}(a,\ 0)$と楕円$C$上の点$\mathrm{P}(2 \cos \theta,\ \sin \theta)$をとる.原点を$\mathrm{O}$とし,直線$\mathrm{AP}$と$y$軸との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$を通り$x$軸に平行な直線と,直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.以下の問に答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{R}$の$y$座標を$f(\theta)$とする.このとき,$0<\theta<\pi$における$f(\theta)$の最大値を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{R}$の距離の$2$乗を$g(\theta)$とする.このとき,$0<\theta<\pi$における$g(\theta)$の最小値を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$a$と$b$を正の実数とする.$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=a$,$\mathrm{CX}_1=b$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を$a,\ b$を用いて表せ.
(2)$l_{n+1}$を$l_n$,$a$,$b$を用いて表せ.
(3)$b=8a$のとき,$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてよい.
熊本大学 国立 熊本大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=1$,$\mathrm{CX}_1=8$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を求めよ.
(2)$l_{n+1}$を$l_n$を用いて表せ.
(3)数列$\{l_n\}$の一般項を求めよ.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。