タグ「平行」の検索結果

4ページ目:全255問中31問~40問を表示)
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とおく.また,$\mathrm{C}$を通り$\mathrm{AD}$と平行な直線と辺$\mathrm{BA}$の延長との交点を$\mathrm{E}$とおく.

ベクトルを$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AB}}=\overrightarrow{c}$,辺の長さを$\mathrm{AC}=b$,$\mathrm{AB}=c$,角を$\angle \mathrm{BAC}=\theta$として,次の問に答えよ.


(1)ベクトル$\overrightarrow{\mathrm{CE}}$を$\overrightarrow{b},\ \overrightarrow{c},\ b,\ c$を用いて表せ.
(2)$\displaystyle \cos \frac{\theta}{2}=p$とおく.ベクトル$\overrightarrow{\mathrm{CE}}$の絶対値$f=|\overrightarrow{\mathrm{CE|}}$を$b,\ c,\ p$を用いて表せ.
(3)三角形$\mathrm{BCE}$の重心を$\mathrm{G}$とおく.ベクトル$\overrightarrow{\mathrm{BG}}$を$\overrightarrow{b},\ \overrightarrow{c},\ b,\ c$を用いて表せ.
(4)ベクトル$\overrightarrow{\mathrm{BG}}$と$\overrightarrow{\mathrm{AC}}$が互いに直交するとき,$\cos \theta$を$b,\ c$を用いて表せ.
学習院大学 私立 学習院大学 2016年 第3問
曲線$C:y=x^3-x$上に,原点とは異なる点$\mathrm{P}$がある.$\mathrm{P}$での$C$の接線を$\ell$とし,$\ell$と$C$の交点で$\mathrm{P}$以外のものを$\mathrm{Q}$とする.さらに,原点を通り$\ell$に平行な直線を$m$とする.

(1)$m$と$C$は相異なる$3$点で交わることを示せ.
(2)$m$と$C$の原点以外の交点を$\mathrm{R}$,$\mathrm{S}$とするとき,$\displaystyle \frac{\mathrm{PQ}}{\mathrm{RS}}$を求めよ.
立教大学 私立 立教大学 2016年 第2問
座標平面上における放物線$C:y=x^2-2x+1$と直線$\ell:y=x$の$2$つの交点のうち,$x$座標の値が小さい方の点を$\mathrm{A}(p,\ p)$とする.直線$\ell$上の点$\mathrm{B}(1,\ 1)$と点$\mathrm{A}$の間にある点$\mathrm{D}(q,\ q)$を通り$y$軸と平行な直線と放物線$C$との交点を$\mathrm{E}$とし,点$\mathrm{E}$を通り$x$軸と平行な直線と放物線$C$とのもう$1$つの交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$p$の値を求めよ.
(2)$\mathrm{EF}$の長さを$q$を用いて表せ.
(3)三角形$\mathrm{DEF}$の面積を$q$を用いて表せ.
(4)点$\mathrm{D}$が線分$\mathrm{AB}$上を動くとき,三角形$\mathrm{DEF}$の面積が最大となる$q$の値を求めよ.
(5)$q$が$(4)$で求めた値であるときの三角形$\mathrm{DEF}$の面積を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{2}{3}$のとき,$\sin \theta \cos \theta=[ア]$,$\sin^3 \theta+\cos^3 \theta=[イ]$である.
(2)高さが$1$の円錐を,頂点から$a$の距離で底面に平行な面で上下$2$つに切断する.体積が$2$等分されるのは,$a=[ウ]$のときである.
(3)$\displaystyle \sum_{k=5}^{20}(2k-7)$の値は$[エ]$である.
(4)多項式$(x-1)(x-2)(x-3)$を$x-4$で割った余りを$A$,$(x-2)(x-3)(x-4)$を$x-1$で割った余りを$B$,$(x-3)(x-4)(x-1)$を$x-2$で割った余りを$C$とすると,$A+B+C=[オ]$である.
(5)定積分$\displaystyle \int_{-2}^5 |x^2-9| \, dx$の値は$[カ]$である.
(6)$5$人の大人と$3$人の子どもが,円形のテーブルの周りに座る.子ども同士が隣り合わない座り方は全部で$[キ]$通りある.ただし,回転して一致するものは同じ座り方とみなす.
(7)半透明のガラス板がある.光がガラス板$1$枚を通ると,その強さが$8$割に減る.光の強さが当初の$1$割未満となるのは,ガラス板を$[ク]$枚以上重ねたときである.ただし,必要であれば$\log_{10}2=0.3010$を用いよ.
(8)$1$周$300 \, \mathrm{m}$の池の周りを,$\mathrm{A}$は徒歩で,$\mathrm{B}$は自転車で,同じ地点から同時にスタートし,同じ方向に回る.自転車が徒歩の$5$倍の速さで進むとき,$\mathrm{B}$が池を$1$周したあと,$\mathrm{A}$を初めて追い抜く地点は,スタート地点から進行方向に$[ケ] \, \mathrm{m}$進んだ地点である.
明治大学 私立 明治大学 2016年 第4問
次の設問の$[ ]$に適当な数を入れなさい.

点$(4,\ 2,\ 7)$を通りベクトル$\overrightarrow{a}=(2,\ 1,\ 4)$に平行な直線を$\ell$,点$(2,\ 12,\ -5)$を通りベクトル$\overrightarrow{b}=(1,\ 3,\ -3)$に平行な直線を$m$とし,直線$\ell$上の点を$\mathrm{P}$,直線$m$上の点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$が直線$\ell$および直線$m$と垂直であるとき,点$\mathrm{P}$の$x$座標は$[ ]$であり,線分$\mathrm{PQ}$の長さは$[ ]$である.
明治大学 私立 明治大学 2016年 第3問
関数$f(x)=x^4-4x^3-2x^2+14x+13$について考える.

(1)$a,\ b,\ c$が$a<b<c$を満たす定数で,関数$y=f(x)$は$x=a$と$x=c$のとき極小値をとり,$x=b$のとき極大値をとる.このとき,$a^2+b^2+c^2=[ア][イ]$である.
(2)直線$y=2x+4$を$\ell$とし,直線$\ell$に平行な直線$y=2x+p$を$m$とする.ただし,$p$は定数である.曲線$y=f(x)$と直線$\ell$は異なる$2$点で接している.さらに,曲線$y=f(x)$と直線$m$が異なる$3$個の共有点をもつとき,$p=[ウ][エ]$である.
また,$\alpha,\ \beta,\ \gamma$が$\alpha<\beta<\gamma$を満たす定数で,曲線$y=f(x)$と直線$\ell$の異なる$2$つの接点の$x$座標を$\alpha,\ \gamma$とし,曲線$y=f(x)$と直線$m$の接点の$x$座標を$\beta$とする.直線$m$の$\alpha \leqq x \leqq \beta$の部分と曲線$y=f(x)$,および直線$x=\alpha$で囲まれた部分の面積は$\displaystyle \frac{[オ][カ][キ]}{[ク][ケ]}$である.
福岡大学 私立 福岡大学 2016年 第1問
$2$直線$x+2y=1$,$(a+1)x+3ay=9$が平行になるように定数$a$の値を定めると$a=[ ]$である.このとき,$2$直線と直線$y=x$および$x$軸で囲まれた部分の面積は$[ ]$である.
神奈川大学 私立 神奈川大学 2016年 第1問
次の空欄を適当に補え.

(1)方程式$x^2+y=63$を満たす自然数の組$(x,\ y)$は$[ ]$組ある.
(2)ベクトル$\overrightarrow{a}=(1,\ 2)$,$\overrightarrow{b}=(-2,\ 3)$,$\overrightarrow{c}=(2,\ -1)$がある.$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{c}$と平行となるのは$t=[ ]$のときである.
(3)$0 \leqq x<2\pi$とする.不等式$\sqrt{3} \sin x+\cos x>\sqrt{3}$を解くと,$x$の値の範囲は$[ ]$である.
(4)$S=1+2r^2+3r^4+4r^6+\cdots +10r^{18}$とする.$r=\sqrt{2}$のとき,$S$の値を求めると$[ ]$である.
(5)赤,青,黄のカードが$2$枚ずつある.この$6$枚のカードを$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に$2$枚ずつ配るとき,どの人の$2$枚についてもその色が異なる確率は$[ ]$である.
(6)複素数平面で,方程式
\[ z \overline{z}-iz+i \overline{z}-9=0 \]
で定まる円の中心を表す複素数は$[ ]$であり,半径は$[ ]$である.ただし,$i$は虚数単位である.
岐阜薬科大学 公立 岐阜薬科大学 2016年 第4問
複素数平面上で原点$\mathrm{O}$と$2$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$を頂点とする$\triangle \mathrm{OAB}$がある.直線$\mathrm{OB}$に関して点$\mathrm{A}$と対称な点を$\mathrm{C}$,直線$\mathrm{OA}$に関して点$\mathrm{B}$と対称な点を$\mathrm{D}$とするとき,以下の問いに答えよ.ただし,複素数$z$と共役な複素数を$\overline{z}$で表すものとする.

(1)点$\mathrm{C}(\gamma)$とするとき,$\gamma=\overline{\left( \displaystyle\frac{\alpha}{\beta} \right)} \;\beta$であることを示せ.
(2)辺$\mathrm{AB}$と直線$\mathrm{DC}$が平行なとき,$\triangle \mathrm{OAB}$はどのような三角形か.
釧路公立大学 公立 釧路公立大学 2016年 第3問
次の問いに答えよ.

(1)次の指数方程式を解け.
\[ 3^{x+1}+3^{2-x}=12 \]
(2)$f(x)=x^3-4x^2-2x+5$とする.以下の問いに答えよ.

(i) 曲線$y=f(x)$上の点$(a,\ f(a))$における接線の傾きを,$a$を用いて表せ.
(ii) 曲線$y=f(x)$上の$2$点$(a,\ f(a))$,$(a+1,\ f(a+1))$における接線が平行になるとき,$a$の値を求めよ.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。