タグ「平行」の検索結果

25ページ目:全255問中241問~250問を表示)
滋賀大学 国立 滋賀大学 2010年 第4問
放物線$C_1:y=x^2,\ C_2:y=x^2-4x+4$がある.$0<a<2$のとき,$C_1$上の点$\mathrm{A}(a,\ a^2)$を通り$x$軸に平行な直線を$\ell$とする.$C_1$と$\ell$で囲まれた図形の面積を$S_1$,$C_2$と$x$軸および$y$軸で囲まれた図形のうち$\ell$より上側の部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)$S_1=S_2$となる$a$の値を求めよ.
(2)$1<a<2$のとき,$C_1$と$\ell$で囲まれた図形のうち$C_2$より上側の部分の面積を$S_3$とする.$S_3=2S_2$となる$a$の値を求めよ.
京都教育大学 国立 京都教育大学 2010年 第4問
中心が$(0,\ 0,\ 1)$,半径が1の球面が,$yz$平面に平行で点$(a,\ 0,\ 0) \ (0<a<1)$を通る平面と交わってできる図形を$C$とする.これに対して,次の問に答えよ.

(1)$C$上の点$\mathrm{P}(a,\ y_1,\ z_1)$と点$\mathrm{Q}(0,\ 0,\ 2)$を通る直線$\mathrm{PQ}$が$xy$平面と交わる点を$\mathrm{R}(x,\ y,\ 0)$とする.$y_1$と$z_1$のそれぞれを$a,\ x,\ y$を使って表せ.
(2)点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{R}$の軌跡を求めよ.
浜松医科大学 国立 浜松医科大学 2010年 第3問
座標平面上に$\mathrm{P}_0(1,\ 0)$を取る.$\mathrm{P}_0$を通り$y$軸と平行な直線と曲線$\displaystyle C:y=\frac{5x+3}{x+3}$との交点を$\mathrm{P}_1(x_1,\ y_1)$とする.次に,$\mathrm{P}_1$を通り$x$軸に平行な直線と直線$\ell:y=x$との交点を$\mathrm{P}_2(x_2,\ y_2)$とする.さらに,$\mathrm{P}_2$を通り$y$軸と平行な直線と$C$との交点を$\mathrm{P}_3(x_3,\ y_3)$とし,$\mathrm{P}_3$を通り$x$軸に平行な直線と直線$\ell$との交点を$\mathrm{P}_4(x_4,\ y_4)$とする.以下この操作を続けて点列$\mathrm{P}_5(x_5,\ y_5)$,$\mathrm{P}_6(x_6,\ y_6)$,$\cdots$,$\mathrm{P}_n(x_n,\ y_n)$,$\cdots$を定める.このとき,次の問いに答えよ.

(1)曲線$C$のグラフを描け.また,その漸近線を求めよ.
(2)$\displaystyle z_n=\frac{x_{2n-1}-3}{x_{2n-1}+1} \ (n=1,\ 2,\ 3,\ \cdots)$とおくとき,$\displaystyle \frac{z_{n+1}}{z_n}$を求めよ.
(3)数列$\{z_n\}$はどのような数列か.また,その一般項$z_n$を求めよ.
(4)数列$\{x_n\}$の一般項$x_n$を求めよ.さらに,極限$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
$2$平面$\pi_1$,$\pi_2$がある.$\pi_1$は$3$点$(1,\ 1,\ 7)$,$(2,\ 1,\ 5)$,$(1,\ 2,\ 5)$を通り,$\pi_2$は$3$点$(2,\ 1,\ 5)$,$(2,\ 3,\ 4)$,$(6,\ 0,\ 5)$を通る.

(1)平面$\pi_2$上の点$(x,\ y,\ z)$は関係式$x+[ソ]y+[タ]z-[$4$][チ]=0$を満たす.
(2)$2$平面$\pi_1$,$\pi_2$の交線は点$\mathrm{A}(-2,\ [ツ],\ [テ])$を通る.
(3)$2$平面の交線に垂直で平面$\pi_1$に平行なベクトル$\overrightarrow{a}$は$([ト],\ [ナ],\ -2)$で,$2$平面の交線に垂直で平面$\pi_2$に平行なベクトル$\overrightarrow{b}$は$([$1$][ニ],\ 10,\ -[ヌ])$である.
(4)$\mathrm{O}$を原点とすると,$2$平面$\pi_1$,$\pi_2$に接する半径$15$の球面の中心$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}} = \overrightarrow{\mathrm{OA}} + s\overrightarrow{a} + t\overrightarrow{b} \quad (s>0,\ t>0) \]
を満たすとき,$\mathrm{P}$の座標は$([$2$][ネ],\ [$1$][ノ],\ -22)$である.
北海学園大学 私立 北海学園大学 2010年 第2問
$xy$平面上に直線
\[ (5k+3)x-(3k+5)y-10k+10=0 \]
がある.ただし,$k$は実数とする.

(1)$k=1$と$k=2$のときの直線の方程式をそれぞれ求め,さらに,これら$2$直線の交点$\mathrm{A}$の座標を求めよ.
(2)$k=0$のときの直線に垂直で,かつ点$\mathrm{A}$を通る直線$\ell_1$の方程式を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{A}$を結ぶ線分$\mathrm{OA}$を$2:3$に内分する点$\mathrm{B}$の座標を求めよ.また,点$\mathrm{B}$を通り,直線$\ell_1$に平行な直線$\ell_2$の方程式を求めよ.
北海学園大学 私立 北海学園大学 2010年 第2問
$xy$平面上に直線
\[ (5k+3)x-(3k+5)y-10k+10=0 \]
がある.ただし,$k$は実数とする.

(1)$k=1$と$k=2$のときの直線の方程式をそれぞれ求め,さらに,これら$2$直線の交点$\mathrm{A}$の座標を求めよ.
(2)$k=0$のときの直線に垂直で,かつ点$\mathrm{A}$を通る直線$\ell_1$の方程式を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{A}$を結ぶ線分$\mathrm{OA}$を$2:3$に内分する点$\mathrm{B}$の座標を求めよ.また,点$\mathrm{B}$を通り,直線$\ell_1$に平行な直線$\ell_2$の方程式を求めよ.
自治医科大学 私立 自治医科大学 2010年 第25問
$2$つの放物線$C_1:y=-2x^2+10x,\ C_2:y=x^2-2x$について考える.$C_1$と$C_2$の相異なる$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.直線$\mathrm{PQ}$に平行で$C_1$に接する直線を$L$とする.$L$と$C_1$と$C_2$で囲まれる面積を$S$としたとき,$\displaystyle \left( \frac{S}{32}+1 \right)^2$の値を求めよ.
南山大学 私立 南山大学 2010年 第2問
$t$を任意の実数として,放物線$C_1:y=x^2-2(3t+2)x+4(3t+5)$を考える.

(1)$C_1$の頂点の座標を$t$で表せ.
(2)$t$の値が変化するとき,$C_1$の頂点が描く曲線$C_2$の方程式を求めよ.また,$C_2$の$y$座標が最大となるときの$t$の値を求めよ.
(3)$(2)$で求めた$C_2$と$x$軸との交点を,$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とする.また,$\mathrm{PQ}$と平行な線分$\mathrm{RS}$の長さが$\mathrm{PQ}$より小さくなるように,$C_2$上に$2$点$\mathrm{R}$,$\mathrm{S}$を,$x$座標の小さい順にとる.このとき,四角形$\mathrm{PQSR}$の面積の最大値とそのときの$\mathrm{RS}$の長さを求めよ.
北海道医療大学 私立 北海道医療大学 2010年 第3問
関数$f(x)=x^2-1$と$g(x)=2a-f(x)$がある.ただし,$a$は定数とする.

(1)方程式$f(x)-g(x)=0$が異なる$2$つの実数解を持ち,かつ,それらが$-1$より大きいとき,$a$の値の範囲を求めよ.また,このとき,方程式$f(x)-g(x)=0$の解を求めよ.
(2)$a$が$(1)$で求めた範囲にあるとし,座標平面上に$y=f(x)$のグラフと$y=g(x)$のグラフがあるとする.

\mon[$(2$-$1)$] $y=f(x)$のグラフと$y=g(x)$のグラフとで囲まれる部分の面積$S_1$を$a$を用いて表せ.
\mon[$(2$-$2)$] $y=f(x)$のグラフと$y=g(x)$のグラフの共有点のうち,$x$座標が負である共有点を$\mathrm{P}$とする.このとき,直線$x=-1$,$\mathrm{P}$を通り$y$軸に平行な直線,$y=f(x)$のグラフ,および,$y=g(x)$のグラフとで囲まれる部分の面積$S_2$を$a$を用いて表せ.
\mon[$(2$-$3)$] 面積の和$S=S_1+S_2$を$a$を用いて表せ.
\mon[$(2$-$4)$] $(1)$で求めた範囲内で$a$を変化させたとき,$S$の最小値とその最小値を与える$a$の値を求めよ.
神奈川大学 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.

(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。