タグ「平行」の検索結果

24ページ目:全255問中231問~240問を表示)
岩手大学 国立 岩手大学 2010年 第4問
2つずつ平行な3組の平面で囲まれた立体を平行六面体という.下図のような平行六面体$\mathrm{OADB}$-$\mathrm{CQRS}$において,$\triangle \mathrm{ABC}$の重心を$\mathrm{F}$,$\triangle \mathrm{DQS}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)4点$\mathrm{O},\ \mathrm{F},\ \mathrm{G},\ \mathrm{R}$は同一直線上にあることを示せ.

(図は省略)
岩手大学 国立 岩手大学 2010年 第4問
$2$つずつ平行な$3$組の平面で囲まれた立体を平行六面体という.下図のような平行六面体$\mathrm{OADB}$-$\mathrm{CQRS}$において,$\triangle \mathrm{ABC}$の重心を$\mathrm{F}$,$\triangle \mathrm{DQS}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$4$点$\mathrm{O},\ \mathrm{F},\ \mathrm{G},\ \mathrm{R}$は同一直線上にあることを示せ.

(図は省略)
熊本大学 国立 熊本大学 2010年 第2問
曲線$C_1:y=x^2$上の点A$(a,\ a^2)$における接線が曲線$C_2:y=x^2-4$と交わる点をB,Cとする.ただし,Bの$x$座標はCの$x$座標より小さいとする.以下の問いに答えよ.

(1)線分BCの中点MおよびCの座標を$a$を用いて表せ.
(2)Mを通り$y$軸に平行な直線,線分MCおよび曲線$C_2$で囲まれた部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2010年 第4問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
福井大学 国立 福井大学 2010年 第5問
$k$を定数とし,$x$の関数$f(x),\ g(x)$を
\[ f(x)=x^2+4x+k,\quad g(x)=\int_{-x}^x f(t) \, dt \]
によって定める.$g(x)$が$x=2$で極値を持つとき,以下の問いに答えよ.

(1)定数$k$の値を求めよ.
(2)$g(x)$の極値をすべて求めよ.
(3)$a$を正の実数とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線$\ell$と,曲線$y=g(x)$上の点$(a,\ g(a))$における接線$m$が平行になるとき,$a$の値と接線$\ell,\ m$の方程式をそれぞれ求めよ.
鳥取大学 国立 鳥取大学 2010年 第2問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
鳥取大学 国立 鳥取大学 2010年 第1問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
防衛医科大学校 国立 防衛医科大学校 2010年 第3問
座標平面上に,点$\mathrm{P}(p,\ q)$を中心とする楕円がある.長軸,短軸がそれぞれ$x$軸,$y$軸に平行であり,それぞれの長さは$4,\ 2$である.このとき,以下の問に答えよ.

(1)この楕円の方程式を求めよ.
(2)原点から,この楕円に異なる$2$本の接線が引けるような,点$\mathrm{P}(p,\ q)$の存在範囲を求めて,図示せよ.
(3)さらに,原点から,この楕円に$2$本の直交する接線が引けるような,点$\mathrm{P}(p,\ q)$の存在範囲を求めて,図示せよ.
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
滋賀大学 国立 滋賀大学 2010年 第2問
$\mathrm{AD} \para \mathrm{BC},\ \mathrm{BC}=2 \mathrm{AD}$である四角形$\mathrm{ABCD}$がある.点$\mathrm{P},\ \mathrm{Q}$が
\[ \overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}},\quad \overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}=\overrightarrow{\mathrm{0}} \]
を満たすとき,次の問いに答えよ.

(1)$\mathrm{AB}$と$\mathrm{PQ}$が平行であることを示せ.
(2)3点$\mathrm{P},\ \mathrm{Q},\ \mathrm{D}$が一直線上にあることを示せ.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。