タグ「平行」の検索結果

23ページ目:全255問中221問~230問を表示)
北星学園大学 私立 北星学園大学 2011年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}:\angle \mathrm{B}:\angle \mathrm{C}=5:3:1$であり,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円の中心を$\mathrm{O}$とする.線分$\mathrm{AO}$の延長と円$\mathrm{O}$との交点を$\mathrm{D}$とする.円$\mathrm{O}$において弦$\mathrm{BC}$と平行に別の弦$\mathrm{EF}$を引く.ただし,$\mathrm{EF}$は線分$\mathrm{OD}$と交わり,弧$\mathrm{BD}$上に点$\mathrm{E}$がくるような位置にあるものとする.以下の問に答えよ.

(1)$\angle \mathrm{BAD}$の大きさを求めよ.
(2)$\angle \mathrm{BAE}=\angle \mathrm{CAF}$であることを証明せよ.
日本女子大学 私立 日本女子大学 2011年 第1問
曲線$y=e^x$を$C$とする.点$\mathrm{Q}_1$を$x$軸上に取る.点$\mathrm{Q}_1$を通り$y$軸と平行な直線を$\ell_1$とする.$\ell_1$が$C$と交わる点を$\mathrm{P}_1$とする.点$\mathrm{P}_1$における$C$の接線を$\ell_1^\prime$とする.$\ell_1^\prime$が$x$軸と交わる点を$\mathrm{Q}_2$とする.さらに,点$\mathrm{Q}_2$を通り$y$軸と平行な直線を$\ell_2$とする.$\ell_2$が$C$と交わる点を$\mathrm{P}_2$とする.点$\mathrm{P}_2$における$C$の接線を$\ell_2^\prime$とする.$\ell_2^\prime$が$x$軸と交わる点を$\mathrm{Q}_3$とする.これを続けて,$C$上の点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$と$x$軸上の点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\cdots$,$\mathrm{Q}_n$,$\cdots$を決める.$\mathrm{P}_1$の座標を$(a,\ e^a)$とするとき,次の問いに答えよ.

(1)$\mathrm{Q}_n$の$x$座標を求めよ.
(2)$C$と直線$\ell_n^\prime$および$\ell_{n+1}$で囲まれた図形の面積を$s_n$とするとき,無限級数$s_1+s_2+\cdots +s_n+\cdots$の和を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第3問
次の問いに答えよ.

(1)$y=3 \cos x$のグラフ上の$1$点$\displaystyle \left( \frac{\pi}{6},\ \frac{3 \sqrt{3}}{2} \right)$における接線に平行な単位ベクトルを$\overrightarrow{a}=(a_1,\ a_2)$,垂直な単位ベクトルを$\overrightarrow{b}=(b_1,\ b_2)$とすると,$(a_1,\ a_2)=[ ]$,$(b_1,\ b_2)=[ ]$である.
(2)$a_1>0$,$\sqrt{13}(a_1,\ a_2)=(A_1,\ A_2)$とおくとき,行列$A=\left( \begin{array}{cc}
A_1+2 & A_2-2 \\
A_1 & A_2
\end{array} \right)$に対し,連立方程式$A \left( \begin{array}{c}
x \\
y
\end{array} \right)=m \left( \begin{array}{c}
x \\
y
\end{array} \right)$が$(x,\ y)=(0,\ 0)$以外の解をもつとき,定数$m$の値は$[ ]$である.次に行列$A$で表される$1$次変換によって,点$\mathrm{P}(x,\ y)$が点$\mathrm{Q}(X,\ Y)$に移り,ベクトル$\overrightarrow{\mathrm{OP}}$とベクトル$\overrightarrow{\mathrm{OQ}}$が同じ向きになったという.ただし点$\mathrm{O}(0,\ 0)$であり,$x \neq 0$とする.このとき$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OP}}$となる定数$k$の値は$[ ]$である.さらにこのとき直線$\mathrm{PQ}$の方程式は$y=[ ]$である.
大阪薬科大学 私立 大阪薬科大学 2011年 第3問
次の問いに答えなさい.

$1$から$6$までのどの目も同様に確からしく出るサイコロ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\mathrm{A}$を振って出た目を$x$,$\mathrm{B}$を振って出た目を$y$,$\mathrm{C}$を振って出た目を$z$とする.

(1)積$xyz$が奇数である確率は$[ ]$である.
(2)$(x-y)(y-z)=0$となる確率は$[ ]$である.
(3)空間のベクトル$\overrightarrow{a}=(x,\ y,\ z)$に対して,$\overrightarrow{a}$と$\overrightarrow{p}=(2,\ -1,\ 0)$が垂直である確率は$[ ]$,$\overrightarrow{a}$と$\overrightarrow{q}=(1,\ 2,\ 3)$が平行である確率は$[ ]$である.
(4)$\log_3 x+\log_3 y+\log_3 z$が整数となる確率を求めなさい.
首都大学東京 公立 首都大学東京 2011年 第3問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(3,\ 0)$を中心とし半径が$r_1$の円$C_1$と,点$\mathrm{B}(1,\ 0)$を中心とし半径が$r_2$の円$C_2$がある.$C_1$上に$y$座標が正である点$\mathrm{P}_1$をとり,$\angle \mathrm{OAP}_1 = \theta$とする.$C_2$上に$y$座標が負である点$\mathrm{P}_2$を,ベクトル$\overrightarrow{\mathrm{AP}_1}$と$\overrightarrow{\mathrm{BP}_2}$が平行であるようにとるとき,以下の問いに答えなさい.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$の座標を$r_1,\ r_2,\ \theta$でそれぞれ表しなさい.
(2)$r_1+r_2 < 2$とする.$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線が$C_1$と$C_2$の両方に接するとき,$\cos \theta$を求めなさい.
(3)$(2)$の条件のもとで$\triangle \mathrm{OP}_1 \mathrm{P}_2$の面積を$r_1,\ r_2$で表しなさい.
首都大学東京 公立 首都大学東京 2011年 第2問
座標空間の3点A$(1,\ 2,\ 2)$,B$(2,\ 1,\ 1)$,C$(2,\ 4,\ 2)$を通る平面を$\alpha$とする.点D$(0,\ 2,\ 1)$を通り,ベクトル$\overrightarrow{a}=(1,\ 1,\ 1)$に平行な直線を$\ell_1$とする.また点Dを通り,ベクトル$\overrightarrow{b}=(-1,\ -1,\ 1)$に平行な直線を$\ell_2$とする.このとき,以下の問いに答えなさい.

(1)$\ell_1$と$\alpha$の交点をEとし,$\ell_2$と$\alpha$の交点をFとする.E,Fの座標を求めなさい.
(2)$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{DF}}$のなす角を$\theta \ (0 \leqq \theta \leqq \pi)$とおくとき,$\cos \theta$の値を求めなさい.
(3)$\triangle$DEFの面積を求めなさい.
岡山大学 国立 岡山大学 2010年 第4問
$a$を正の実数とする.放物線$P:y = x^2$上の点A$(a,\ a^2)$における接線を$\ell_1$とし,点Aを通り$\ell_1$と直交する直線を$\ell_2$とする.また,$\ell_2$と放物線$P$との交点のうちAではない方をB$(b,\ b^2)$とする.さらに,点Bを通り$\ell_1$に平行な直線を$\ell_3$とし,$\ell_3$と放物線$P$との交点のうちBではない方をC$(c,\ c^2)$とする.

(1)$b+c = 2a$であることを示せ.
(2)放物線$P$と$\ell_3$で囲まれた部分の面積を$S$とする.$S$を$a$を用いて表し,$S$が最小になるときの$S$と$a$の値を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
$a$を正の定数とする.2つの放物線$C_1:y=x^2$と$C_2:y=(x-2)^2+4a$の交点をPとする.次の問いに答えよ.

(1)放物線$C_1$上の点Q$(t,\ t^2)$における接線の方程式を求めよ.さらに,その接線のうち$C_2$に接するものを$\ell$とする.$\ell$の方程式を求めよ.
(2)点Pを通り$y$軸に平行な直線を$m$とする.$\ell$と$m$の交点をRとするとき,線分PRの長さを求めよ.
(3)直線$\ell,\ m$と放物線$C_1$で囲まれた図形の面積を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
半径$R$の円$C$の中心を通る直線を$\ell$とする.円$C$上の2点A,Bは弦ABが$\ell$と交わらないように動くものとする.$\ell$を軸として弦ABを回転させてできる図形の面積を$S$とする.ただし,直線$\ell$は円$C$と同一平面上にあるものとする.

(1)弦ABの長さを一定とするならば,弦ABが$\ell$と平行のとき$S$が最大となることを証明せよ.
(2)弦ABの長さが変化するとき,$S$の最大値を求めよ.
東京大学 国立 東京大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上の曲線
\[ C:\quad y=\frac{1}{2}x+\sqrt{\frac{1}{4}x^2+2} \]
と,その上の相異なる$2$点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を考える.

(1)$\mathrm{P}_i \ (i=1,\ 2)$を通る$x$軸に平行な直線と,直線$y=x$との交点を,それぞれ$\mathrm{H}_i \ (i=1,\ 2)$とする.このとき$\triangle \mathrm{OP}_1 \mathrm{H}_1$と$\triangle \mathrm{OP}_2 \mathrm{H}_2$の面積は等しいこと示せ.
(2)$x_1<x_2$とする.このとき$C$の$x_1\leqq x\leqq x_2$の範囲にある部分と,線分$\mathrm{P}_1 \mathrm{O}$,$\mathrm{P}_2 \mathrm{O}$で囲まれる図形の面積を,$y_1$,$y_2$を用いて表せ.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。