タグ「平行」の検索結果

17ページ目:全255問中161問~170問を表示)
立教大学 私立 立教大学 2013年 第3問
図のように,$8$本の平行な線分と,それらと垂直に交わる$8$本の平行な線分が,それぞれ長さ$1$の間隔で並んでいる.これらの線分のうち$4$本で囲まれる四角形について,次の問に答えよ.

(図は省略)


(1)一辺の長さが$6$の正方形の個数を求めよ.
(2)一辺の長さが$5$の正方形の個数を求めよ.
(3)すべての正方形の個数を求めよ.
(4)すべての長方形のうち正方形でないものの個数を求めよ.
(5)正方形でない長方形のうち,図の点$\mathrm{A}$を含まないものの個数を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第4問
$a$を正の定数とする.曲線$y=|e^{-ax|\sin ax} (x \geqq 0)$において,極大となる点を$x$座標の小さい方から順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.$\mathrm{P}_n (n=1,\ 2,\ \cdots)$を通り,$y$軸に平行な直線が$x$軸と交わる点を$\mathrm{Q}_n$とする.$\mathrm{P}_n$,$\mathrm{Q}_n$および原点を頂点とする三角形の面積を$S_n$とする.

(1)$\mathrm{P}_n$の座標を$a,\ n$を用いて表せ.
(2)$S_n$を$a,\ n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{S_n}{S_{n+1}}$の値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第1問
$\overrightarrow{a}=(1,\ 0,\ 1)$,$\overrightarrow{b}=(1,\ 1,\ 0)$とする.点$\mathrm{P}(1,\ 1,\ 0)$を通り,$\overrightarrow{a}$に平行な直線を$\ell_1$とし,点$\mathrm{Q}(0,\ 0,\ 1)$を通り,$\overrightarrow{b}$に平行な直線を$\ell_2$とする.以下の問いに答えなさい.

(1)$\ell_1$上の点$\mathrm{R}$と$\ell_2$上の点$\mathrm{S}$を通る直線$\ell_3$が,$\ell_1$と$\ell_2$に垂直であるとする.このとき,$\mathrm{R}$,$\mathrm{S}$の座標を求めなさい.
(2)$\ell_1$上の$2$点$\mathrm{E}$,$\mathrm{F}$が$\mathrm{EF}=2$を満たしながら動き,$\ell_2$上を点$\mathrm{G}$が動くとき,$\triangle \mathrm{EFG}$の面積の最小値を求めなさい.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第3問
$xy$平面上に$7$点$\mathrm{A}(-4,\ 1)$,$\mathrm{B}(-5,\ 0)$,$\mathrm{C}(-3,\ 0)$,$\mathrm{D}(-2,\ 1)$,$\mathrm{E}(0,\ 2)$,$\mathrm{F}(0,\ 0)$,$\mathrm{G}(2,\ 0)$がある.四角形$\mathrm{ABCD}$は右へ,三角形$\mathrm{EFG}$は左へ,それぞれ$x$軸に平行に毎秒$0.5$の速さで移動する.移動開始から$t$秒後の状況について,次の問いに答えよ.

(1)点$\mathrm{F}$が$t_1$秒後に点$\mathrm{C}$と,$t_2$秒後に点$\mathrm{B}$と一致した.$t_1$と$t_2$の値を求めよ.
(2)$t_1<t<t_2$とする.このとき,四角形$\mathrm{ABCD}$と三角形$\mathrm{EFG}$の重なる部分の面積$S$を$t$を用いて表し,$S$の最大値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
原点を$\mathrm{O}$とする$xyz$空間内に$1$辺の長さが$1$の正四面体$\mathrm{OPQR}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通り$z$軸に平行な$3$直線と$xy$平面との交点をそれぞれ$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$,$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の面積をそれぞれ$S$,$S_1$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$3$点を通る平面と$xy$平面のなす角を$\theta$とするとき,$S_1=S |\cos \theta|$を示せ.
(2)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の周上を含む内部にあるとき,$z$軸と$\triangle \mathrm{PQR}$の交点を$\mathrm{A}$とする.このとき正四面体$\mathrm{OPQR}$の体積$V$は$\displaystyle V=\frac{1}{3} \mathrm{OA} \cdot S_1$となることを示し,$S_1$の最小値を求めよ.
(3)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の外部にあり,線分$\mathrm{OP}^\prime$と線分$\mathrm{Q}^\prime \mathrm{R}^\prime$が交点$\mathrm{B}$をもつとき,点$\mathrm{B}$を通り$z$軸に平行な直線と,直線$\mathrm{OP}$および直線$\mathrm{QR}$との交点をそれぞれ$\mathrm{C}$,$\mathrm{D}$とする.このとき四角形$\mathrm{OQ}^\prime \mathrm{P}^\prime \mathrm{R}^\prime$の面積を$S_2$とすると$\displaystyle V=\frac{1}{3} \mathrm{CD} \cdot S_2$となることを示し,$S_2$の最大値を求めよ.
島根県立大学 公立 島根県立大学 2013年 第1問
次の問いに答えよ.

(1)曲線$y=2x^3-ax^2+3bx$上の点$(-1,\ 4)$における接線が,直線$2013x-671y+2013=0$と平行になるとき,$a$と$b$の値を求めよ.
(2)$\mathrm{SUCCESS}$の$7$文字をすべて使ってできる順列のうち,最初の文字と最後の文字がともに$\mathrm{C}$となる確率を分数で答えよ.
(3)$(5x-y-2z)(25x^2+5xy+y^2-2yz+4z^2+10zx)$の展開式において,$xyz$の係数を求めよ.
(4)円$x^2+2x+y^2-3=0$上を動く点$\mathrm{P}$と,$2$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ -4)$を$3$つの頂点とする三角形$\mathrm{ABP}$の重心$\mathrm{G}$の軌跡は,中心が$(a,\ b)$,半径$r$の円となる.このとき,$a,\ b,\ r$の値を求めよ.
京都大学 国立 京都大学 2012年 第2問
正四面体$\mathrm{OABC}$において,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上にとる.ただし$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は四面体$\mathrm{OABC}$の頂点とは異なるとする.$\triangle \mathrm{PQR}$が正三角形ならば,$3$辺$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$はそれぞれ$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に平行であることを証明せよ.
京都大学 国立 京都大学 2012年 第2問
正四面体$\mathrm{OABC}$において.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上にとる.ただし$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は四面体$\mathrm{OABC}$の頂点とは異なるとする.$\triangle \mathrm{PQR}$が正三角形ならば,3辺$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$はそれぞれ3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に平行であることを証明せよ.
岡山大学 国立 岡山大学 2012年 第1問
$\mathrm{O}$を原点とする座標平面における曲線$\displaystyle C: \frac{x^2}{4}+y^2=1$上に,点$\mathrm{P} \displaystyle\left( 1,\ \frac{\sqrt{3}}{2} \right)$をとる.

(1)$C$の接線で直線$\mathrm{OP}$に平行なものをすべて求めよ.
(2)点$\mathrm{Q}$が$C$上を動くとき,$\triangle \mathrm{OPQ}$の面積の最大値と,最大値を与える$\mathrm{Q}$の座標をすべて求めよ.
埼玉大学 国立 埼玉大学 2012年 第1問
実数$t$に対し,$xy$平面において$2$つの位置ベクトル
\[ \overrightarrow{\mathrm{OA}} = \left(\strut \frac{t}{2}+1,\ \frac{t}{2} \right),\ \overrightarrow{\mathrm{OB}} = \left(\strut t,\ \frac{t^2}{2} \right) \]
を考える.

(1)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行である.$\rfloor$
(2)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行であり,かつ$t>1$である.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。