タグ「平行」の検索結果

15ページ目:全255問中141問~150問を表示)
徳島大学 国立 徳島大学 2013年 第3問
$\mathrm{O}$を原点とする座標空間において,点$\mathrm{A}(-4,\ 8,\ 2)$を通りベクトル$\overrightarrow{u}=(3,\ 0,\ 1)$に平行な直線を$\ell$とする.また,点$\mathrm{B}(10,\ 3,\ -4)$を通りベクトル$\overrightarrow{v}=(-1,\ 3,\ 0)$に平行な直線を$m$とする.$\mathrm{P}$を$\ell$上の点とし,$\mathrm{Q}$を$m$上の点とする.このとき,実数$s,\ t$を用いて,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{u}$,$\overrightarrow{\mathrm{BQ}}=t \overrightarrow{v}$と表すことができる.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$の成分を$s,\ t$を用いて表せ.
(2)$2$直線$\ell$と$m$は共有点をもたないことを証明せよ.
(3)ベクトル$\overrightarrow{\mathrm{PQ}}$がベクトル$\overrightarrow{u},\ \overrightarrow{v}$の両方に垂直となるとき,点$\mathrm{P}$および点$\mathrm{Q}$の座標を求めよ.
佐賀大学 国立 佐賀大学 2013年 第3問
$x$軸,$y$軸,$z$軸を座標軸,原点を$\mathrm{O}$とする座標空間において,$z$軸 \\
を中心軸とする半径$1$の円柱を考える.次に,$x$軸を含み$xy$平面と \\
のなす角が$\displaystyle \frac{\pi}{4}$となる平面を$\alpha$とし,平面$\alpha$による円柱の切り口の \\
曲線を$C$とする.また,点$\mathrm{A}(1,\ 0,\ 0)$とする.さらに,曲線$C$上 \\
の点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\angle \mathrm{AOQ}=\theta$ \ \\
$(0 \leqq \theta<2\pi)$とする.このとき,次の問に答えよ.
\img{711_2927_2013_1}{48}

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{A}$を通り$z$軸に平行な直線を$\ell$とする.$\ell$によって円柱の側面を切り開いた展開図の上に,曲線$C$の概形をかけ.
(3)図のように,平面$\alpha$と$yz$平面の交線を$Y$軸とする.$xY$平面における曲線$C$の方程式を求め,その概形をかけ.
(図は省略)
宇都宮大学 国立 宇都宮大学 2013年 第5問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の半円$C:x^2+y^2=1 \ (y>0)$上の点を$\mathrm{P}$とする.$a>1$に対して$x$軸上の定点を$\mathrm{A}(a,\ 0)$とし,直線$\mathrm{AP}$と$y$軸の交点を$\mathrm{Q}$,$\mathrm{Q}$を通り$x$軸に平行な直線と直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OP}$が$x$軸の正の方向となす角を$\theta$,$\mathrm{OR}=r$とするとき,直線$\mathrm{AQ}$の方程式を$a,\ \theta,\ r$を用いて表せ.
(2)点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{R}$のえがく曲線の方程式を求めよ.
(3)(2)で得られた曲線の$a=\sqrt{2}$であるときの概形をかけ.
大阪教育大学 国立 大阪教育大学 2013年 第2問
直線$y=mx \ (m \neq 0)$を$\ell$とし,行列$\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される平面上の$1$次変換$f$は次の二つの条件を満たすとする.

$\ell$の各点は$f$で動かない.
$f$は点$\mathrm{A}(1,\ 0)$を,$\mathrm{A}$を通り$\ell$に平行な直線上の点に移す.

このとき,次の問いに答えよ.

(1)$a,\ c,\ d$を$b,\ m$を用いて表せ.
(2)$ad-bc$の値を求めよ.
(3)$f$により平面上の任意の点$\mathrm{P}$は,$\mathrm{P}$を通り$\ell$に平行な直線上の点に移ることを示せ.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
島根大学 国立 島根大学 2013年 第3問
$A$を$2$次正方行列とする.座標平面上の点$\mathrm{P}_1(1,\ 0)$が,$A$の表す移動により$\displaystyle \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$に,$A^2$の表す移動により$\displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$に移るとする.このとき,次の問いに答えよ.

(1)$A$を求めよ.
(2)$\displaystyle B=\frac{1}{2}A^3$とする.$B$の表す移動によって,点$\mathrm{P}_1$が移る点を$\mathrm{P}_2$と定め,点$\mathrm{P}_2$が移る点を$\mathrm{P}_3$と定める.以下同様にして$B$の表す移動によって点$\mathrm{P}_{n-1}$が移る点を$\mathrm{P}_n$と定める.このとき,点$\mathrm{P}_n$の座標を求めよ.
(3)(2)で定めた点$\mathrm{P}_n$から曲線$y=x^2$に引いた接線で,$x$軸に平行でないものの傾きを$a_n$とおく.このとき,$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
京都教育大学 国立 京都教育大学 2013年 第4問
四面体$\mathrm{OABC}$の辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{CA}$,$\mathrm{CB}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$をとる.このとき,直線$\mathrm{PQ}$と直線$\mathrm{RS}$が平行であるための必要十分条件は
\[ \frac{\mathrm{OP}}{\mathrm{OA}}=\frac{\mathrm{OQ}}{\mathrm{OB}} \quad \text{かつ} \quad \frac{\mathrm{CR}}{\mathrm{CA}}=\frac{\mathrm{CS}}{\mathrm{CB}} \]
であることを証明せよ.
北海学園大学 私立 北海学園大学 2013年 第5問
座標平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ a+1)$,$\mathrm{B}(1,\ 3)$,$\mathrm{C}(2,\ 1)$について,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直であるとき,$a$の値を求めよ.また,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行であるとき,$a$の値を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$30^\circ$であるとき,$a$の値を求めよ.
(3)点$\mathrm{P}(x,\ y)$が直線$\ell:\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OC}}$上にあるとき,$y$を$x$を用いて表せ.また,点$\mathrm{A}$が$\ell$上にあるとき,$a$と$t$の値を求めよ.ただし,$t$は実数とする.
北海学園大学 私立 北海学園大学 2013年 第2問
座標平面において,放物線$C:y=-x^2+9$上の点$\mathrm{P}$の$x$座標を$a$とし,$0<a<3$とする.また,点$\mathrm{P}$を通り,$x$軸に平行な直線を$\ell$とし,点$\mathrm{P}$における$C$の接線を$m$とする.

(1)曲線$C$と直線$\ell$で囲まれた図形の面積$S_1$を$a$を用いて表せ.
(2)曲線$C$と直線$m$,および直線$x=3$で囲まれた図形の面積$S_2$を$a$を用いて表せ.
(3)$S_1+S_2$の最小値と,そのときの$a$の値を求めよ.
北海学園大学 私立 北海学園大学 2013年 第6問
座標平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ a+1)$,$\mathrm{B}(1,\ 3)$,$\mathrm{C}(2,\ 1)$について,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直であるとき,$a$の値を求めよ.また,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行であるとき,$a$の値を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$30^\circ$であるとき,$a$の値を求めよ.
(3)点$\mathrm{P}(x,\ y)$が直線$\ell:\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OC}}$上にあるとき,$y$を$x$を用いて表せ.また,点$\mathrm{A}$が$\ell$上にあるとき,$a$と$t$の値を求めよ.ただし,$t$は実数とする.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。