タグ「平行四辺形」の検索結果

4ページ目:全61問中31問~40問を表示)
京都大学 国立 京都大学 2013年 第1問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$1:1$に内分する点を$\mathrm{E}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{F}$,辺$\mathrm{CD}$を$3:1$に内分する点を$\mathrm{G}$とする.線分$\mathrm{CE}$と線分$\mathrm{FG}$の交点を$\mathrm{P}$とし,線分$\mathrm{AP}$を延長した直線と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とするとき,比$\mathrm{AP}:\mathrm{PQ}$を求めよ.
京都大学 国立 京都大学 2013年 第2問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$1:1$に内分する点を$\mathrm{E}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{F}$,辺$\mathrm{CD}$を$3:1$に内分する点を$\mathrm{G}$とする.線分$\mathrm{CE}$と線分$\mathrm{FG}$の交点を$\mathrm{P}$とし,線分$\mathrm{AP}$を延長した直線と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とするとき,比$\mathrm{AP}:\mathrm{PQ}$を求めよ.
大阪教育大学 国立 大阪教育大学 2013年 第3問
平行四辺形$\mathrm{ABCD}$を底面とする四角錐$\mathrm{OABCD}$を考える.線分$\mathrm{OB}$の中点を$\mathrm{B}^\prime$,線分$\mathrm{OC}$を$1:2$に内分する点を$\mathrm{C}^\prime$とし,$\mathrm{A}$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る平面と直線$\mathrm{OD}$の交点を$\mathrm{D}^\prime$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$\overrightarrow{\mathrm{OD^\prime}}$は$\overrightarrow{\mathrm{OD}}$の何倍か.
(3)三角錐$\mathrm{AOB}^\prime \mathrm{D}^\prime$の体積は,三角錐$\mathrm{AOBD}$の体積の何倍か.
(4)四角錐$\mathrm{OAB}^\prime \mathrm{C}^\prime \mathrm{D}^\prime$の体積は,四角錐$\mathrm{OABCD}$の体積の何倍か.
西南学院大学 私立 西南学院大学 2013年 第4問
空間内に$3$点$\mathrm{A}(2,\ 1,\ 0)$,$\mathrm{B}(-2,\ 3,\ -2)$,$\mathrm{C}(2,\ -3,\ 3)$がある.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角を$\theta$とすると,
\[ \cos \theta=-\frac{[ノ] \sqrt{[ハ]}}{[ヒフ]} \]
である.
(2)四角形$\mathrm{ABCD}$が平行四辺形となるとき,
\[ \mathrm{D}([ヘ],\ [ホマ],\ [ミ]) \]
である.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$と$\mathrm{P}(1,\ 2,\ z)$が同一平面上にあるとき,
\[ z=-\frac{[ム]}{[メ]} \]
である.
千葉工業大学 私立 千葉工業大学 2013年 第3問
次の各問に答えよ.

(1)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{3a_n}{2n \cdot a_n+3} (n=1,\ 2,\ 3,\ \cdots)$で定められている.$\displaystyle b_n=\frac{1}{a_n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,$b_1=[ア]$,$\displaystyle b_{n+1}-b_n=\frac{[イ]}{[ウ]}n$が成り立つ.$\displaystyle a_{10}=\frac{[エ]}{[オカ]}$であり,$\displaystyle a_n<\frac{1}{50}$をみたす最小の$n$は$[キク]$である.
(2)平行四辺形$\mathrm{OABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$とし,線分$\mathrm{CD}$を$3:4$に内分する点を$\mathrm{E}$とするとき,
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OC}},\quad \overrightarrow{\mathrm{OE}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OC}} \]
である.直線$\mathrm{OE}$と辺$\mathrm{BC}$との交点を$\mathrm{F}$とするとき,
\[ \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \]
であり,三角形$\mathrm{CEF}$の面積は平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{[チ]}{[ツテ]}$倍である.
鳥取環境大学 公立 鳥取環境大学 2013年 第3問
平行四辺形$\mathrm{ABCD}$において,$\mathrm{AB}=4$,$\mathrm{AD}=3$,$\angle \mathrm{A}=60^\circ$であるものとする.また,辺$\mathrm{AB}$を$1:1$に内分する点を$\mathrm{E}$とし,辺$\mathrm{AD}$を$1:2$に内分する点を$\mathrm{F}$とする.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{EF}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AD}}$を用いて表せ.
(2)内積$\overrightarrow{\mathrm{EF}} \cdot \overrightarrow{\mathrm{AD}}$の値を求めよ.
(3)辺$\mathrm{BC}$(ただし,$2$点$\mathrm{B}$,$\mathrm{C}$を含む)上の点$\mathrm{G}$を考える.このとき,点$\mathrm{G}$を辺$\mathrm{BC}$上のどこにとっても内積$\overrightarrow{\mathrm{EF}} \cdot \overrightarrow{\mathrm{EG}}$の値が変わらないことを示せ.また,その値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第3問
曲線$7x^2+2 \sqrt{3}xy+9y^2=30$上の点$(x,\ y)$に対して,変換
\[ \left\{ \begin{array}{l}
X=x \cos \theta-y \sin \theta \\
Y=x \sin \theta+y \cos \theta \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を考える(ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする).このとき$X,\ Y$のみたす式は
\[ a(\theta)X^2+b(\theta)XY+c(\theta)Y^2=30 \]
となる.ただし,$a(\theta)$,$b(\theta)$,$c(\theta)$は$\theta$のみにより決まる定数である.いま,$b(\theta)=0$をみたす$\theta$を$\theta_1$とする.

(1)$\theta_1$を求めよ.
(2)$a(\theta_1)X^2+c(\theta_1)Y^2=30$で囲まれた図形の面積を求めよ.
(3)$a(\theta_1)X^2+c(\theta_1)Y^2=30$に内接する平行四辺形の面積の最大値を求めよ.
東京大学 国立 東京大学 2012年 第5問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$が次の条件(D)を満たすとする.

\mon[(D)] $A$の成分$a$,$b$,$c$,$d$は整数である.また,平面上の4点$(0,\ 0)$,$(a,\ b)$,$(a+c,\ b+d)$,$(c,\ d)$は,面積1の平行四辺形の4つの頂点をなす.

$B=\biggl( \begin{array}{cc}
1 & 1 \\
0 & 1
\end{array} \biggr)$とおく.次の問いに答えよ.

(1)行列$BA$と$B^{-1}A$も条件(D)を満たすことを示せ.
(2)$c=0$ならば,$A$に$B$,$B^{-1}$のどちらかを左から次々にかけることにより,4個の行列$\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array} \biggr)$のどれかにできることを示せ.
(3)$|\,a\,| \geqq |\,c\,| >0$とする.$BA$,$B^{-1}A$に少なくともどちらか一方は,それを$\biggl( \begin{array}{cc}
x & y \\
z & w
\end{array} \biggr)$とすると
\[ |\,x\,|+|\,z\,| < |\,a\,|+|\,c\,| \]
を満たすことを示せ.
岡山大学 国立 岡山大学 2012年 第3問
四角形$\mathrm{ABCD}$は平行四辺形ではないとし,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.

(1)線分$\mathrm{PR}$の中点$\mathrm{K}$と線分$\mathrm{QS}$の中点$\mathrm{L}$は一致することを示せ.
(2)線分$\mathrm{AC}$の中点$\mathrm{M}$と線分$\mathrm{BD}$の中点$\mathrm{N}$を結ぶ直線は点$\mathrm{K}$を通ることを示せ.
広島大学 国立 広島大学 2012年 第1問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$の表す$1$次変換によって,$2$点$\mathrm{P}(1,\ 1)$,$\mathrm{Q}(2,\ 2)$は連立不等式$1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2$の表す領域内の点$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$にそれぞれ移されるものとする.ただし,$a,\ b,\ c,\ d$は正の実数で$a>c$を満たすとする.次の問いに答えよ.

(1)$a+b=1$および$c+d=1$が成り立つことを証明せよ.
(2)$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{R}(a,\ c)$,$\mathrm{S}(a+b,\ c+d)$,$\mathrm{T}(b,\ d)$を頂点とする平行四辺形$\mathrm{ORST}$の面積を$p$とするとき,次の式が成り立つことを証明せよ.
\[ A \biggl( \begin{array}{c}
b \\
-c
\end{array} \biggr) = p \biggl( \begin{array}{c}
b \\
-c
\end{array} \biggr) \]
(3)自然数$n$に対して,$a_n,\ b_n,\ c_n,\ d_n$を
\[ \biggl( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \biggr) = A^n \biggl( \begin{array}{cc}
1 & b \\
1 & -c
\end{array} \biggr) \]
で定める.このとき$a_n,\ b_n,\ c_n,\ d_n$を$b,\ c,\ n$および(2)の$p$を用いて表せ.
(4)$\displaystyle A^3=\frac{1}{27} \biggl( \begin{array}{cc}
14 & 13 \\
13 & 14
\end{array} \biggr)$となるように$A$を定めよ.
スポンサーリンク

「平行四辺形」とは・・・

 まだこのタグの説明は執筆されていません。