タグ「平均値の定理」の検索結果

1ページ目:全4問中1問~10問を表示)
獨協医科大学 私立 獨協医科大学 2015年 第5問
$x>-1$で定義された関数$f(x)$は,等式
\[ (x+1)f(x)-\int_0^x f(t) \, dt=\log (x+1)+x-1 \]
を満たしている.

(1)このとき$f(0)=[アイ]$であり,さらに
\[ f^\prime(x)=\frac{x+[ウ]}{(x+[エ])^{\mkakko{オ}}} \]
である.
(2)これをもとに$f(x)$を求めると$f(x)=[カ]-[キ]$である.ただし,$[カ]$,$[キ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \log x \quad \nagamaruni \log (x+1) \quad \nagamarusan x \log (x+1) \quad \nagamarushi \frac{1}{x} \quad \nagamarugo \frac{1}{x+1} \quad \nagamaruroku \frac{x}{x+1} \]
(3)$a>0$とする.関数$g(x)=\log x$について,区間$[a,\ a+1]$で平均値の定理を用いると,$g(a+1)-g(a)=[ク]$となる実数の定数$c$が区間$[ケ]$に存在する.これを用いると自然数$m$に対する$f(e^m)$と$m$の大小は$f(e^m) [コ] m$となることがわかる.ただし,$[ク]$,$[ケ]$には,次の選択肢$\mathrm{I}$の$\nagamaruichi$~$\nagamarushichi$の中から,$[コ]$には,選択肢$\mathrm{II}$の$\nagamaruichi$~$\nagamarusan$の中から最も適切なものをそれぞれ一つずつ選ぶこと.

選択肢$\mathrm{I}$
$\displaystyle \nagamaruichi c \qquad \nagamaruni c+1 \qquad \nagamarusan \frac{1}{c} \qquad \nagamarushi \frac{1}{c+1} \qquad \nagamarugo \log c$
$\nagamaruroku [a,\ a+1] \qquad \nagamarushichi (a,\ a+1)$
選択肢$\mathrm{II}$
$\displaystyle \nagamaruichi < \qquad \nagamaruni > \qquad \nagamarusan =$

(4)さらに
\[ \int_0^{e^x-1} f(t) \, dt=(x-[サ])(e^x-[シ]) \]
となるので,自然数$n$に対して$\displaystyle p(n)=e^{\frac{2}{3n}}-1$とおくと
\[ \lim_{n \to \infty} n \int_0^{p(n)} f(t) \, dt=\frac{[スセ]}{[ソ]} \]
である.
九州工業大学 国立 九州工業大学 2013年 第2問
関数$f(x)=\log (x^2-x+2) \ (0 \leqq x \leqq 1)$に対して,以下の問いに答えよ.ただし,対数は自然対数を表している.

(1)$y=f(x) \ (0 \leqq x \leqq 1)$の極値を求めよ.
(2)$x$についての方程式$\log (x^2-x+2)=x$は$\displaystyle \frac{1}{2}<x<1$の範囲に実数解をただ$1$つもつことを示せ.必要であれば,$\log 2<0.7$,$\log 7>1.9$であることを用いてよい.
(3)$y=f^\prime(x) \ (0 \leqq x \leqq 1)$の最大値と最小値を求めよ.
(4)平均値の定理を用いることで,$0 \leqq a<b \leqq 1$となる実数$a,\ b$に対して,$\displaystyle |f(b)-f(a)|<\frac{1}{2}|b-a|$となることを示せ.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第4問
次の問いに答えよ.

(1)$\displaystyle m(x)=\frac{m_0}{\sqrt{1-\displaystyle\frac{x}{c^2}}}$とする.ただし$m_0,\ c$は正の定数である.また$c^2$より十分小さい正の定数$\varepsilon$に対して$0<x<\varepsilon$とする.

(i) $m^\prime(x)=[ ]$である.
(ii) $m(x)-m_0$を平均値の定理を用いて表すと$[$*$]$である.ただし$*$を書き表わす際,新たに必要となる実数があれば$k$を用い,$k$が満たすべき条件も明記せよ.
(iii) $\varepsilon \to 0$とすると$*$の値は$[ ]$に近づく.

(2)$a,\ b$を正の実数とするとき,積分$\displaystyle \int_0^1 \frac{1}{\{ax+b(1-x)\}^2} \, dx$の値は$[ ]$である.またこの値を$a$について微分すると,$[ ]$となる.
山口大学 国立 山口大学 2010年 第2問
次の初項と漸化式で定まる数列$\{a_n\}$を考える.
\[ a_1=\frac{1}{2},\ a_{n+1}=e^{-a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
ここで,$e$は自然対数の底で,$1<e<3$である.このとき,次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \frac{1}{3}<a_n<1$が成り立つことを示しなさい.
(2)方程式$x=e^{-x}$はただ1つの実数解をもつことと,その解は$\displaystyle \frac{1}{3}$と1の間にあることを示しなさい.
(3)関数$f(x)=e^{-x}$に平均値の定理を用いることによって,次の不等式が成り立つことを示しなさい.
\begin{align}
\frac{1}{3} \text{と1との間の任意の実数}x_1,\ x_2 \text{について,} \nonumber \\
|f(x_2)-f(x_1)| \leqq e^{-\frac{1}{3}} |x_2-x_1| \nonumber
\end{align}
(4)数列$\{a_n\}$は,方程式$x=e^{-x}$の実数解に収束することを示しなさい.
スポンサーリンク

「平均値の定理」とは・・・

 まだこのタグの説明は執筆されていません。