タグ「小数点」の検索結果

1ページ目:全11問中1問~10問を表示)
東京大学 国立 東京大学 2016年 第5問
$k$を正の整数とし,$10$進法で表された小数点以下$k$桁の実数
\[ 0.a_1a_2 \cdots a_k=\frac{a_1}{10}+\frac{a_2}{{10}^2}+\cdots +\frac{a_k}{{10}^k} \]
を$1$つとる.ここで,$a_1,\ a_2,\ \cdots,\ a_k$は$0$から$9$までの整数で,$a_k \neq 0$とする.

(1)次の不等式をみたす正の整数$n$をすべて求めよ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{n}-{10}^k<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(2)$p$が$5 \cdot {10}^{k-1}$以上の整数ならば,次の不等式をみたす正の整数$m$が存在することを示せ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{m}-p<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(3)実数$x$に対し,$r \leqq x<r+1$をみたす整数$r$を$[x]$で表す.$\sqrt{s}-[\sqrt{s}]=0.a_1 a_2 \cdots a_k$をみたす正の整数$s$は存在しないことを示せ.
東京薬科大学 私立 東京薬科大学 2016年 第3問
次の問に答えよ.

(1)$7^n$が$15$桁の自然数になるとき,整数$n=[ネノ]$である.ただし,$\log_{10}7=0.8451$とする.
(2)$(1)$の$n$に対して,$7^n$の一の位の数字は$[ハ]$である.
(3)$7^{30},\ 7^{60}$の桁数を求めるとき,$\log_{10}7$として$0.8451$のうち一つの数字を見誤ったため,それぞれ桁数は$1$だけ小さいものが得られた.このとき,$0.8451$の小数点以下第$[ヒ]$位の数字を$[フ]$と見誤ったと考えられる.
広島女学院大学 私立 広島女学院大学 2016年 第3問
下の表は,ある高校の生徒$30$人の$2$つの科目$x$と$y$のテスト(点)の得点をまとめたものである.数値は,四捨五入していない正確な値とし,次の問いに答えよ.ただし,$\overline{x}$,$\overline{y}$はそれぞれ科目$x$,$y$の平均を意味し,$\sqrt{1.64}=1.28$,$\sqrt{2.73}=1.65$とする.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
番号 & $x$ & $y$ & $x-\overline{x}$ & $(x-\overline{x})^2$ & $y-\overline{y}$ & $(y-\overline{y})^2$ & $(x-\overline{x})(y-\overline{y})$ \\ \hline
$1$ & $38$ & $39$ & $-23$ & $529$ & $-29$ & $841$ & $667$ \\ \hline
$2$ & $40$ & $50$ & $-21$ & $441$ & $-18$ & $324$ & $378$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline
$29$ & $80$ & $90$ & $19$ & $361$ & $22$ & $484$ & $418$ \\ \hline
$30$ & $82$ & $96$ & $21$ & $441$ & $28$ & $784$ & $588$ \\ \hline
合計 & $1830$ & $[$12$]$ & $0$ & $4932$ & $0$ & $8190$ & $3181$ \\ \hline
平均値 & $61$ & $[$13$]$ & & & & & \\ \hline
中央値 & $60$ & $63$ & & & & & \\ \hline
\end{tabular}


(1)$[$12$]$,$[$13$]$の値を求めよ.
(2)科目$x,\ y$のそれぞれの分散${s_x}^2,\ {s_y}^2$を求めよ.小数点以下を四捨五入して整数値で求めよ.${s_x}^2=[$14$]$,${s_y}^2=[$15$]$
(3)科目$x,\ y$の共分散$s_{xy}$を求めよ.小数点以下を四捨五入して整数値で求めよ.$s_{xy}=[$16$]$
(4)科目$x$と$y$の相関係数$r$を求めよ.小数第$3$位を四捨五入して小数第$2$位まで求めよ.$r=[$17$]$
(5)科目$x$と$y$の散布図として適切なものを下の(ア),(イ),(ウ)の図から選べ.$[$18$]$
(図は省略)
中央大学 私立 中央大学 2015年 第4問
「当たり」のカードが$2$枚,「外れ」のカードが$8$枚,計$10$枚のカードが入っている箱がある.この箱を使って,次の試行を行う.
\begin{itemize}
試行$\mathrm{A}$:カードを$1$枚引き,「当たり」の有無を確認して,箱に戻す.
試行$\mathrm{B}$:カードを$2$枚引き,「当たり」の有無を確認して,箱に戻す.
\end{itemize}
$k$を正の整数とし,試行$\mathrm{A}$を$k$回繰り返したとき,

「当たり」の有る試行が,少なくとも$1$回ある確率

を$P(k)$とする.一方,試行$\mathrm{B}$を$k$回繰り返した時に,

$2$枚とも「当たり」である試行が,少なくとも$1$回ある確率

を$Q(k)$とする.このとき,以下の設問に答えよ.

(1)$P(3)$および$Q(2)$を求めよ.
(2)下の常用対数表を用いて,$\log_{10}45$の値を小数点以下$3$位まで求めよ.


\begin{tabular}{c|ccccc}
\hline
$n$ & $2$ & $3$ & $7$ & $11$ & $13$ \\ \hline
$\log_{10}n$ & $0.301$ & $0.477$ & $0.845$ & $1.041$ & $1.114$ \\ \hline
\end{tabular}


(3)$P(10)$と$Q(100)$はどちらが大きいか.根拠を述べて解答せよ.なお,前問の常用対数表を利用してよい.
京都薬科大学 私立 京都薬科大学 2015年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$2$次関数$f(x)=ax^2+bx+2a^2$は,$x=-1$で最大値をとり,$f(1)=14$を満たす.このとき,$a=[ア]$,$b=[イ]$で,$f(x)$の最大値は$[ウ]$である.
(2)$1$つのさいころを$1$の目が出るまで投げ続ける.ただし,投げる回数は最大$100$回とする.このとき,ちょうど$n$回($n<100$)投げてやめる確率は$[エ]$で,投げる回数が$n$回以下($n<100$)でやめる確率は$[オ]$である.また,$1$の目が$2$回出るまで投げ続けるとき(最大$100$回),投げる回数が$n$回以下($n<100$)でやめる確率は$[カ]$である.
(3)平面上の$\triangle \mathrm{OAB}$において,$\mathrm{OA}=4$,$\mathrm{OB}=3$,$\displaystyle \cos \angle \mathrm{AOB}=\frac{2}{3}$が成立しているとする.このとき,$\mathrm{AB}=[キ]$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表し,$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{5}{2} \overrightarrow{a}+2 \overrightarrow{b}$を満たす点$\mathrm{C}$をとれば,$\mathrm{AC}=[ク]$,$\cos \angle \mathrm{BAC}=[ケ]$が成立する.
(4)不等式$\sin 2\theta+\sin 4\theta>\sin 3\theta$を満たす$\theta$の範囲は$[コ]<\theta<[サ]$および$[シ]<\theta<[ス]$である.ただし,$0<\theta<\pi$とする.
(5)ある正の数$a$を底としたときの,$2$と$5$の対数の近似値がそれぞれ$\log_a 2=0.693$,$\log_a 5=1.609$であるとする.また,$\sqrt[4]{10}=1.778$とする.指数関数$y=pa^{-qx}$($p,\ q$は正の数)において,$x=1$のとき$y=10$,$x=5$のとき$y=1$となるならば,$p=[セ]$,$q=[ソ]$である.また,$y$がちょうど$p$の半分となるときの$x$の値は$[タ]$である.なお,解答は小数点以下$2$桁で示すこと(必要ならば小数第$3$位を四捨五入せよ).
鹿児島大学 国立 鹿児島大学 2014年 第8問
次の各問いに答えよ.

(1)数字$1$が書かれた玉$a$個($a \geqq 1$)と,数字$2$が書かれた玉$1$個がある.これら$a+1$個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ$3$の無作為標本を抽出し,その玉の数字を取り出した順に$X_1$,$X_2$,$X_3$とする.標本平均$\displaystyle \overline{X}=\frac{X_1+X_2+X_3}{3}$の平均$E(\overline{X})$が$\displaystyle \frac{3}{2}$であるとき,$\overline{X}$の確率分布とその分散$V(\overline{X})$を求めよ.ただし,復元抽出とは,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを$1$個取り出す抽出法である.
(2)ある企業の入社試験は採用枠$300$名のところ$500$名の応募があった.試験の結果は$500$点満点の試験に対し,平均点$245$点,標準偏差$50$点であった.得点の分布が正規分布であるとみなされるとき,合格最低点はおよそ何点であるか.小数点以下を切り上げて答えよ.ただし,確率変数$Z$が標準正規分布に従うとき,$P(Z>0.25)=0.4$,$P(Z>0.5)=0.3$,$P(Z>0.54)=0.2$とする.
名城大学 私立 名城大学 2013年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$3$次方程式$x^3+(a+4)x^2+(4a+5)x+20=0$の$1$つの解が$1+2i$であるとき,実数$a=[ア]$であり,$1$つある実数解は$[イ]$である.
(2)$\log_{10}2=0.301$とするとき,$\log_25$の値を小数点$4$桁以下を切り捨て,小数点$3$桁まで求めると$[ウ]$となる.また,$2^n$が$10$桁の数となる最大の自然数$n$は$[エ]$である.
兵庫県立大学 公立 兵庫県立大学 2011年 第1問
以下の問に答えなさい.

(1)$x=2^{60}$のとき,次の問に答えなさい.ただし,$\log_{10}2=0.3010$とする.

(i) $x$は何桁の数か.
(ii) $\displaystyle \frac{1}{x}$は小数点以下何桁に初めて$0$ではない数が出てくるか.

(2)次の数列の第$k$項$a_k \ (k=1,\ 2,\ 3,\ \cdots)$と,第$1$項から第$n$項までの和$S_n$とを求めなさい.
$3,\ 33,\ 333,\ 3333,\ 33333,\ \cdots$
浜松医科大学 国立 浜松医科大学 2010年 第4問
ある感染症の対策について考える.感染症の防御のためには感染拡大の試算が必要であり,感染拡大は自然にはその感染症の感染力と,致死性によって予測される.感染経路は,飛沫,接触,飲食などいろいろあり,感染力の制御,つまり感染を広げないために,ワクチン開発はもちろんであるが,外出規制(イベントの自粛や学級閉鎖など),手洗い呼びかけ,などが有効である. \\
ここでは簡単のために,$1$つの感染症のみを考え,ある一定の集団(たとえば$1000$人程度の島)を対象とし,外部との接触,出入りがないと仮定する.最初の時点での過去感染者,未感染者,現在感染者の割合をそれぞれ$x_0,\ y_0,\ z_0$とする.現在感染者は$1$か月後にはすべて過去感染者となり,一度感染した人はもう感染しない.また幸いなことにこの感染により死者は生じず,また簡単のために他要因による死者,あるいは出生,転入出もないとする. \\
$1$か月ごとの変動を見ることとし,$i$か月後の時点の上記の割合をそれぞれ$x_i,\ y_i,\ z_i$で示す.症状は丁度$1$か月続くので,一人の人が現在感染者として数えられるのは$1$回のみである. \\
過去感染者は,それまでの過去感染者に,$1$か月前の現在感染者を足したものである.また,現在感染者は,$1$か月前の未感染者と$1$か月前の現在感染者の接触頻度と,この感染症の感染力によって決まる.接触頻度の係数を$a$,感染力の係数を$b$とすると,現在感染者の割合は$1$か月前の現在感染者の割合,未感染者の割合,$a,\ b$の$4$つをかけたもので求められる. \\
$x_0=0$,$y_0=0.9$,$z_0=0.1$として,以下の問いに答えよ.計算は小数点以下第$4$位を四捨五入して求めよ.

(1)$x_i,\ y_i,\ z_i$を,$x_{i-1},\ y_{i-1},\ z_{i-1},\ a,\ b$で表せ.
(2)$a=1,\ b=1$として,$x_1,\ y_1,\ z_1,\ x_2,\ y_2,\ z_2,\ x_3,\ y_3,\ z_3$をそれぞれ求めよ.
(3)$a=1$,感染力の係数$b$を$2$とした時の$x_1,\ x_2,\ x_3$を求めよ.
(4)手洗いの徹底や外出規制が最初からなされたとして,$a=0.5$,$b=1$とした時の,$x_1,\ x_2,\ x_3$を求め,(2),(3)の結果と共に,縦軸を過去感染者の割合,横軸を時間として,$3$つの場合の変化を同一座標上にグラフで示せ.
兵庫県立大学 公立 兵庫県立大学 2010年 第1問
次の各問に答えなさい.

(1)$\displaystyle \frac{1}{7}$を小数で表したとき,小数点以下第$2010$位の数を求めなさい.
(2)$X,\ Y$を正の実数,$a$を$1$と異なる正の実数とするとき,次の等式を証明しなさい.
\[ \log_a XY=\log_a X+\log_a Y \]
スポンサーリンク

「小数点」とは・・・

 まだこのタグの説明は執筆されていません。