タグ「導関数」の検索結果

6ページ目:全552問中51問~60問を表示)
星薬科大学 私立 星薬科大学 2016年 第5問
$x$の$3$次式$f(x)$が等式
\[ 4f(x)-xf^\prime(x)=3x^3-4x^2-6x+4 \]
を満たすとき,次の問に答えよ.

(1)このとき,$f(x)=[$37$]x^3-[$38$]x^2-[$39$]x+[$40$]$である.

(2)曲線$y=f(x)$を$C$とし,$C$上の点$(0,\ [$40$])$で$C$と接する接線を$\ell$とするとき,$\ell$の方程式は$y=-[$41$]x+[$42$]$であり,この$\ell$は,点$(0,\ [$40$])$以外の$C$上の点$\displaystyle \left( \frac{[$43$]}{[$44$]},\ -\frac{[$45$]}{[$46$]} \right)$において$C$と交わる.

(3)$C$と$\ell$とで囲まれた部分の面積は$\displaystyle \frac{[$47$]}{[$48$][$49$]}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
名城大学 私立 名城大学 2016年 第4問
$f(x)=e^{-x} \sin x,\ g(x)=e^{-x} \cos x$とするとき,次の各問に答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)すべての$x$について,$f^\prime(x)=af(x+b)$が成り立つような定数$a,\ b$を求めよ.ただし,$0 \leqq b \leqq \pi$とする.
(3)$\displaystyle \frac{\pi}{4} \leqq x \leqq \frac{5\pi}{4}$において,曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
京都産業大学 私立 京都産業大学 2016年 第2問
以下の$[ ]$にあてはまる式または数値を記入せよ.

$n$を$3$以上の整数とする.整数$x$を$2$進法で表す.上から$k+1$桁目($1 \leqq k \leqq n$)の数を$a_k$とし,$x=1a_1a_2 \cdots {a_n}_{(2)}$と表す.$a_1,\ a_2,\ \cdots,\ a_n$は$0$か$1$である.この形の$x$は$[ア]$個ある.
このような$x$の中で値が最も小さいものは$10 \cdots 0_{(2)} (a_1=a_2=\cdots =a_n=0)$であり,$n$で表すと$2^n$である.また,最も大きいものを$n$で表すと$[イ]$である.$x=110 \cdots 0_{(2)} (a_1=1,\ a_2=\cdots =a_n=0)$のとき,$x$を$n$で表すと$[ウ]$である.
このような$x=1 a_1a_2 \cdots {a_n}_{(2)}$に対し,$x^\prime=1 a_2a_3 \cdots a_n{a_1}_{(2)}$とする.$x=x^\prime$となるようなすべての$x$を$n$で表すと$[エ]$である.
$x=110 \cdots 00_{(2)}$のとき,$x-x^\prime$を$n$で表すと$[オ]$である.
$x>x^\prime$となるような$x$は$[カ]$個ある.$x-x^\prime=1$となる$x$を$n$で表すと$[キ]$である.
東京都市大学 私立 東京都市大学 2016年 第2問
次の問に答えよ.

(1)定積分$\displaystyle \int_1^e \frac{\sqrt{1-\log x}}{x} \, dx$の値を求めよ.
(2)関数$f(x)=(x+1)2^{x-3}-2^x-1$に対し,$f^\prime(x)=0$を満たす$x$の値をすべて求めよ.
(3)$0$でない実数$a$に対し,極限値
\[ \lim_{x \to 0} \frac{\cos (a-1)x-\cos (a+1)x}{x \sin x} \]
を求めよ.
津田塾大学 私立 津田塾大学 2016年 第2問
$p,\ q,\ r$を有理数とし,$f(x)=x^3+3px^2+qx+r$とする.曲線$y=f(x)$は点$(t,\ 0)$で$x$軸に接している.

(1)$f(x)=f^\prime(x)(Ax+B)+Cx+D$をみたす定数$A,\ B,\ C,\ D$を$p,\ q,\ r$を用いて表せ.
(2)$t$は有理数であることを示せ.
津田塾大学 私立 津田塾大学 2016年 第3問
空間内の異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一平面上にないとし,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$,$\mathrm{OB} \perp \mathrm{BC}$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$|\overrightarrow{a}|^2=\overrightarrow{a} \cdot \overrightarrow{b}$,$|\overrightarrow{a}|^2=\overrightarrow{a} \cdot \overrightarrow{c}$,$|\overrightarrow{b}|^2=\overrightarrow{b} \cdot \overrightarrow{c}$であることを示せ.
(2)$\mathrm{A}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{AB}^\prime$,$\mathrm{A}$から直線$\mathrm{OC}$へ下ろした垂線を$\mathrm{AC}^\prime$とし,$\overrightarrow{\mathrm{OB}^\prime}=k \overrightarrow{b}$,$\overrightarrow{\mathrm{OC}^\prime}=l \overrightarrow{c}$とする.$|\overrightarrow{a}|^2=k|\overrightarrow{b}|^2=l|\overrightarrow{c}|^2$であることを示せ.
(3)$\angle \mathrm{B}^\prime \mathrm{AC}^\prime=\theta$とするとき,$\cos \theta$を$k,\ l$を用いて表せ.
立教大学 私立 立教大学 2016年 第4問
$c$を$0<c<1$を満たす実数とする.関数
\[ F(x)=\int_0^x (t-c) \log \left( t^2-t+\frac{1}{2} \right) \, dt \]
について,次の問いに答えよ.

(1)$F(x)$の導関数$F^\prime(x)$を求めよ.
(2)$F^\prime(x)<0$となる$x$の値の範囲を$c$を用いて表せ.
(3)$F(x)$が極大値をとる$x$の値と極小値をとる$x$の値をそれぞれ求めよ.
(4)$\displaystyle c=\frac{1}{2}$のとき,$x \geqq 0$の範囲における$F(x)$の最小値を求めよ.
津田塾大学 私立 津田塾大学 2016年 第4問
\begin{mawarikomi}{68mm}{
(図は省略)
}
座標平面の$x$軸上に直線$\ell$がある.点$\mathrm{O}^\prime$を中心とする半径$1$の円$C$が直線$\ell$に接しながら$x$軸の負の方向から正の方向へ,すべらずに転がっている.円$C$は$\mathrm{O}^\prime$のまわりに毎秒$1$ラジアンの割合で回転しているとする.

ある時刻に点$\mathrm{O}^\prime$が点$(0,\ 1)$に達し,同時に直線$\ell$が座標平面の原点$\mathrm{O}$を中心として毎秒$1$ラジアンの割合で正の向きに回転を始めた.その時刻に原点にある円$C$上の点を$\mathrm{P}$とする.円$C$はその後も$\ell$に接しながら同じように転がり続けるとする.

\end{mawarikomi}

(1)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における円$C$と直線$\ell$の接点$\mathrm{Q}$の座標を求めよ.
(2)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における点$\mathrm{P}$の座標を求めよ.
(3)$\ell$が動き始めてから$\displaystyle \frac{\pi}{2}$秒後までに点$\mathrm{P}$が描く曲線の長さを求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また設問$(3)$に答えなさい.

時間$t$とともに座標平面上を動く点$\mathrm{P}(t)$は次の条件$(ⅰ)$をみたすとする.

(i) $\mathrm{P}(t)$は原点をとおらず,その偏角$\theta(t)$および原点からの距離$r(t)$は$t$について微分可能,かつ$r(0)=1$であり,さらに$\theta^\prime(t)=1$が成り立つ.



(1)動点$\mathrm{P}(t)$の座標を$(x(t),\ y(t))$とし,時刻$t$における$\mathrm{P}(t)$の速度ベクトル$\displaystyle \overrightarrow{v}(t)=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$とベクトル$\overrightarrow{b}(t)=(\cos \theta (t),\ \sin \theta (t))$のなす角を$\alpha (t)$とする.このとき$\cos \alpha (t)$を$r(t)$を用いて表すと$\cos \alpha (t)=[あ]$である.
(2)動点$\mathrm{P}(t)$がさらに次の条件$(ⅱ)$をみたすとする.

(ii) すべての$t$に対して$\displaystyle \alpha (t)=\frac{\pi}{4}$である.

このとき$r(t)=[い]$である.
(3)条件$(ⅰ),\ (ⅱ)$をみたす$2$つの動点$\mathrm{P}_1(t)$,$\mathrm{P}_2(t)$の間に次の条件$(ⅲ)$が成り立つとする.ただし動点$\mathrm{P}_1(t)$,$\mathrm{P}_2(t)$それぞれの偏角を$\theta_1(t)$,$\theta_2(t)$,原点からの距離を$r_1(t)$,$r_2(t)$とし,速度ベクトルを$\overrightarrow{v_1}(t)$,$\overrightarrow{v_2}(t)$とする.

(iii) すべての$t$に対してベクトル$\overrightarrow{v_1}(t)$とベクトル$\overrightarrow{v_2}(t)$は垂直である.

このとき時刻$s$から$u$の間に動点$\mathrm{P}_2(t)$がその軌道に沿って動く道のりを$l(s,\ u)$とすると
\[ l(s,\ u)=|\overrightarrow{\mathrm{P|_1(u) \mathrm{P}_2(u)}}-|\overrightarrow{\mathrm{P|_1(s) \mathrm{P}_2(s)}} \]
が成り立つことを示しなさい.ただし$s<u$とする.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。