タグ「導関数」の検索結果

55ページ目:全552問中541問~550問を表示)
日本福祉大学 私立 日本福祉大学 2010年 第2問
以下の問いに答えよ.

(1)直線$y=2x+3$に対して,点$\mathrm{A}(1,\ 3)$と対称な点$\mathrm{A}^\prime$の座標を求めよ.
(2)点$\displaystyle \mathrm{B} \left( 2,\ \frac{6}{5} \right)$とするとき,直線$y=2x+3$上に点$\mathrm{P}$を取り,線分$\mathrm{AP}$と線分$\mathrm{PB}$の長さの和を最小にする点$\mathrm{P}$の座標を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第2問
以下の問いに答えよ.

(1)直線$y=2x+3$に対して,点$\mathrm{A}(1,\ 3)$と対称な点$\mathrm{A}^\prime$の座標を求めよ.
(2)点$\displaystyle \mathrm{B} \left( 2,\ \frac{6}{5} \right)$とするとき,直線$y=2x+3$上に点$\mathrm{P}$を取り,線分$\mathrm{AP}$と線分$\mathrm{PB}$の長さの和を最小にする点$\mathrm{P}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
首都大学東京 公立 首都大学東京 2010年 第3問
整数の値をとる整数$n$の関数$f(x),\ g(x)$を
\[ f(n)= \frac{1}{2}n(n+1),\quad g(n)=(-1)^n \]
で定め,その合成関数を$h(n)=g(f(n))$とする.さらに,1つのさいころを4回振って,出た目の数を順に$j,\ k,\ l,\ m$として$a=h(j),\ b=h(k),\ c=h(l),\ d=h(m)$とおき,関数
\[ P(x) = ax^3-3bx^2+3cx-d \]
を考える.このとき,以下の問いに答えなさい.

(1)$n=1,\ 2,\ 3,\ 4,\ 5,\ 6$に対して,$h(n)$の値を求めなさい.
(2)$P(x)$がある点で極値をとる関数になる確率を求めなさい.
(3)$P(x)$が点$(1,\ P(1))$を変曲点に持つ関数になる確率を求めなさい.
(4)$P(x)$が$P(1)=P^{\, \prime}(1)=P^{\, \prime\prime}(1)=0$を満たす関数になる確率を求めなさい.
大阪市立大学 公立 大阪市立大学 2010年 第3問
関数$f(x) = \sin 2x+3 \sin x$について,次の問いに答えよ.

(1)導関数$f^{\, \prime}(x)$の最大値,最小値を求めよ.
(2)$a$を定数として,$g(x) = f(x)-ax$と定義するとき,$g(x)$が極値をもつような$a$の値の範囲を求めよ.
愛知県立大学 公立 愛知県立大学 2010年 第4問
原点をOとする座標平面上に2点P$(a,\ c)$およびQ$(b,\ d)$をとり,$\triangle$OPQを考える.線分OPが$x$軸の正の部分となす角を$\theta$とする.ただし,$\theta$は時計の針の回転と逆の向きを正とする.このとき,以下の問いに答えよ.

(1)$\sin \theta$と$\cos \theta$を$a,\ c$の式で表せ.
(2)点Qを原点の周りに$-\theta$だけ回転させた点を$(x,\ y)$とするとき,$x,\ y$を$a,\ b,\ c,\ d$で表せ.
(3)$\triangle$OPQの面積を$a,\ b,\ c,\ d$で表せ.
(4)一次変換
\[ A=\biggl( \begin{array}{cc}
\sqrt{2}+\sqrt{5} & 3 \\
1 & \sqrt{2}-\sqrt{5}
\end{array} \biggr) \]
によって,点P,Qがそれぞれ点P$^\prime$,Q$^\prime$に移されるものとする.$\triangle$OP$^\prime$Q$^\prime$の面積は$\triangle$OPQの何倍か.
広島市立大学 公立 広島市立大学 2010年 第1問
次の問いに答えよ.

\mon[問1] 次の関数の導関数を求めよ.

\mon[(1)] $y=e^{2-3x}$
\mon[(2)] $\displaystyle y=\sqrt{\frac{2-x}{x+2}}$

\mon[問2] 次の不定積分を求めよ.

\mon[(1)] $\displaystyle \int \log (1+2x) \, dx$
\mon[(2)] $\displaystyle \int \frac{1}{1+e^x} \, dx$
広島市立大学 公立 広島市立大学 2010年 第3問
関数$\displaystyle f(x)=\frac{\sin x}{\sqrt{5+4 \cos x}} \quad (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)導関数$f^{\, \prime}(x)$を求め,$f(x)$の増減を調べよ.また,$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれた2つの部分の面積の和を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
関数$\displaystyle f_n(x)=x-\frac{x^2}{2}+\frac{x^3}{3}- \cdots +\frac{(-1)^{n-1}x^n}{n} \ $(ただし$x \geqq 0,\ n=1,\ 2,\ \cdots$)について,次の問いに答えよ.

(1)導関数$\displaystyle \frac{d}{dx}f_n(x)$を求めよ.
(2)$n$が偶数のとき,$f_n(x) \leqq \log (1+x)$,$n$が奇数のとき$f_n(x) \geqq \log (1+x)$であることを示せ.
(3)(2)を利用して$\displaystyle \log \frac{6}{5}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
(4)$\displaystyle \frac{1}{250}+\frac{1}{251}+\cdots +\frac{1}{299}+\frac{1}{300}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第4問
次の問いに答えよ.

(1)$a$を正の定数とするとき,関数
\[ f(x)=\log (x+\sqrt{a+x^2}) \]
の導関数$f^\prime(x)$を求めよ.
(2)$t=\sqrt{3}\tan \theta$とおくことにより,定積分
\[ I=\int_0^1 \frac{dt}{\sqrt{(3+t^2)^3}} \]
を求めよ.
(3)$0 \leqq x \leqq 1$であるすべての$x$に対して,不等式
\[ \int_0^x \frac{dt}{\sqrt{(3+t^2)^3}} \geqq k \int_0^x \frac{dt}{\sqrt{3+t^2}} \]
が成り立つための実数$k$の範囲を求めよ.ただし,$\log 3=1.10$とする.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。