タグ「導関数」の検索結果

45ページ目:全552問中441問~450問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2011年 第3問
$x$の多項式$f(x)$は
\[ \int_{-1}^1 xf(x) \, dx=0,\quad f(1)=f(-1)=0 \]
を満たしているとする.

(1)このとき$\displaystyle \int_{-1}^1 x^2f^\prime(x) \, dx=0$を示せ.
(2)さらに多項式$f(x)$は3次以下で$\displaystyle \int_{-1}^1 f(x)e^x \, dx=1$を満たしているとする.このような$f(x)$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2011年 第1問
$x$の$2$次関数$f(x)$が条件$f(0)=3$,$f^\prime(0)=-2$,$f^\prime(3)=4$を満たすとする.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$に点$\displaystyle \left( \frac{3}{2},\ 0 \right)$から$2$本の接線を引いたとき,それぞれについて接線の方程式および接点の座標を求めよ.
(3)曲線$y=f(x)$および$(2)$で求めた$2$本の接線で囲まれた部分の面積を求めよ.
高知大学 国立 高知大学 2011年 第3問
連続関数$f(x)$に対して,
\[ g(x)=\int_0^x (f(t)+2) \sin (x-t) \, dt \]
とする.このとき,次の問いに答えよ.

(1)定積分$\displaystyle \int_0^x (t+2) \sin (x-t) \, dt$を求めよ.
(2)$\displaystyle g(x)=\sin x \int_0^x (f(t)+2) \cos t \, dt-\cos x \int_0^x (f(t)+2) \sin t \, dt$を示せ.
(3)関数$g(x)$の導関数$g^\prime(x)$は$\displaystyle g^\prime(x)=\int_0^x (f(t)+2) \cos (x-t) \, dt$となることを示せ.
(4)関数$g^\prime(x)$の導関数$g^{\prime\prime}(x)$は$g^{\prime\prime}(x)=f(x)-g(x)+2$となることを示せ.
(5)任意の実数$x$に対して$g(x)=f(x)$が成り立つとき,$f(x)$を求めよ.
福井大学 国立 福井大学 2011年 第4問
関数$f_n(x) \ (n=0,\ 1,\ 2,\ 3,\ \cdots)$は次の条件を満たしている.

$(ⅰ)$ $f_0(x)=e^{2x}+1$
$(ⅱ)$ $\displaystyle f_n(x)=\int_0^x (n+2t)f_{n-1}(t) \, dt-\frac{2x^{n+1}}{n+1} \quad (n=1,\ 2,\ 3,\ \cdots)$

このとき以下の問いに答えよ.

(1)$f_1(x),\ f_2(x)$を求めよ.
(2)$f_n(x)$の具体的な形を推測し,その結果を数学的帰納法で証明せよ.
(3)$\displaystyle \sum_{n=1}^\infty \left\{ f_n^\prime \left( \frac{1}{2} \right) \right\}$を求めよ.ただし,$0<r<1$に対して$\displaystyle \lim_{n \to \infty}nr^n=0$となることを用いてよい.
宮城教育大学 国立 宮城教育大学 2011年 第4問
関数$f(x)=e^{3x}+e^{-3x}-12(e^x+e^{-x})$を考える.このとき,次の問いに答えよ.

(1)$g(x)=e^x-e^{-x}$とおく.関数$g(x)$は単調増加であることを示せ.
(2)$u=g(x)$とおくとき,$f(x)$の導関数$f^\prime(x)$を$u$を用いて表せ.
(3)関数$y=f(x)$の増減,極値を調べ,そのグラフをかけ.
長崎大学 国立 長崎大学 2011年 第8問
曲線$y=\log x$の接線は常にこの曲線の上側にあることを利用して,次の問いに答えよ.以下,$k$は自然数とする.

(1)点$\mathrm{A}_k(k,\ 0)$を通り$x$軸に垂直な直線と曲線$y=\log x$との交点を${\mathrm{A}_k}^\prime$とし,${\mathrm{A}_k}^\prime$におけるこの曲線の接線を$\ell_k$とする.また,$k \geqq 2$のとき,$\displaystyle \mathrm{B}_k \left( k-\frac{1}{2},\ 0 \right)$,$\displaystyle \mathrm{C}_k \left( k+\frac{1}{2},\ 0 \right)$を通り$x$軸に垂直な直線と接線$\ell_k$との交点をそれぞれ${\mathrm{B}_k}^\prime$,${\mathrm{C}_k}^\prime$とする.四角形$\mathrm{B}_k \mathrm{C}_k {\mathrm{C}_k}^\prime {\mathrm{B}_k}^\prime$の面積を求めよ.
(2)次の2つの値の大小を比較せよ.

(i) $\log k$と$\displaystyle \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log x \, dx \quad$(ただし,$k \geqq 2$)
(ii) $\displaystyle \frac{\log k+\log (k+1)}{2}$と$\displaystyle \int_k^{k+1} \log x \, dx \quad$(ただし,$k \geqq 1$)

(3)$\displaystyle a_n=\log (n!)-\frac{1}{2}\log n$とおくと,2以上の自然数$n$について,次の不等式が成り立つことを示せ.
\[ \int_{\frac{3}{2}}^n \log x \, dx<a_n<\int_1^n \log x \, dx \]
(4)2以上の自然数$n$について
\[ \left\{
\begin{array}{l}
U_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+\displaystyle\frac{3}{2} \left( 1-\log \displaystyle\frac{3}{2} \right) \\
V_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+1
\end{array}
\right. \]
とおくとき,次の不等式を示せ.
\[ U_n<\log (n!)<V_n \]
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
山梨大学 国立 山梨大学 2011年 第2問
実数全体で定義された関数$F(x)$が次の条件$①$と$②$の両方を満たすとき「$F(x)$は性質$(\mathrm{P})$を持つ」ということにする.

$①$ すべての実数$x$について$F(x)>0$である.
$②$ $F(x)$は何度でも微分が可能で$\displaystyle \frac{d^2}{dx^2}\log F(x)=\frac{1}{\{F(x)\}^2}$を満たす.


(1)$y=f(x)$が性質$(\mathrm{P})$を持つとき$y^{\prime\prime}y-(y^\prime)^2=1$,$y^{\prime\prime\prime}y-y^{\prime\prime}y^\prime=0$となること,および$\displaystyle \frac{y^{\prime\prime}}{y}$は正の定数であることを示せ.
(2)$y=f(x)$は性質$(\mathrm{P})$を持つとする.$\displaystyle \frac{y^{\prime\prime}}{y}=k^2$($k$は正の定数)とおくとき,$k^2y^2-(y^\prime)^2=1$であることを示し,さらに$ky-y^\prime>0$および$ky+y^\prime>0$が成り立つことを示せ.
(3)$c$を実数とする.(2)のとき,関数$\displaystyle kf(c)y+\frac{1}{k}f^\prime(c)y^\prime$も性質$(\mathrm{P})$を持つことを証明せよ.ただし$①$を示すために
\[ kf(c)y+\frac{1}{k}f^\prime(c)y^\prime=f(c)(ky \mp y^\prime) \pm \frac{1}{k}y^\prime (kf(c) \pm f^\prime(c)) \quad (\text{複号同順}) \]
を利用してもよい.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第1問
三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$は辺$\mathrm{A}_0 \mathrm{B}_0$の長さが$a$,$\angle \mathrm{A}_0=60^\circ$,$\angle \mathrm{B}_0=90^\circ$の直角三角形であり,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$は辺${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime$の長さが$a$,$\angle {\mathrm{A}_0}^\prime=45^\circ$,$\angle {\mathrm{B}_0}^\prime=90^\circ$の直角三角形である.右図に示すように三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の$3$つの辺上にそれぞれ点$\mathrm{D}_1$,$\mathrm{A}_1$,$\mathrm{B}_1$をとり,正方形$\mathrm{B}_0 \mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$を作る.次に,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$の$3$つの辺上に点$\mathrm{D}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$をとり,正方形$\mathrm{B}_1 \mathrm{D}_2 \mathrm{A}_2 \mathrm{B}_2$を作る.これを繰り返し,正方形$\mathrm{B}_{j-1} \mathrm{D}_j \mathrm{A}_j \mathrm{B}_j$を作る.その正方形の面積を$S_j$とおく.ただし,$j=1,\ 2,\ \cdots$である.同様な操作で,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$にも正方形${\mathrm{B}_{j-1}}^\prime {\mathrm{D}_j}^\prime {\mathrm{A}_j}^\prime {\mathrm{B}_j}^\prime$を作り,その正方形の面積を${S_j}^\prime$とおく.これらの図形について以下の問いに答えよ.
(図は省略)

(1)$S_1$を$a$を用いた式で示せ.
(2)$S_j$を$a$と$j$を用いた式で示せ.
(3)三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$内に正方形を描くことを無限に繰り返すとき,正方形の面積の総和$S_\mathrm{T}$が三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の面積$S_0$に占める割合を求めよ.
(4)$\displaystyle c_j=\frac{S_{j+2}}{{S_j}^\prime}$で定義される一般項$c_j$を持つ無限級数は,収束するか発散するかを,根拠を式で示した上で答えよ.
東京海洋大学 国立 東京海洋大学 2011年 第2問
関数$f(x)=ax^2+bx+c$に対して次の等式が成り立っているとする.
\[ f^\prime(x)=x \int_{-2}^1 f(t) \, dt+\int_0^1 tf^\prime(t) \, dt \]
このとき,次の問に答えよ.ただし,$a,\ b,\ c$は定数で$a>0$とする.

(1)$b,\ c$を$a$で表せ.
(2)曲線$y=f(x)$の$\displaystyle x \geqq -\frac{1}{2}$の部分と$x$軸および$y$軸とで囲まれた図形の面積が$1$のとき,$a$の値を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。