タグ「導関数」の検索結果

43ページ目:全552問中421問~430問を表示)
東京大学 国立 東京大学 2011年 第1問
$x$の3次関数$f(x) = ax^3+bx^2+cx+d$が,3つの条件
\[ f(1) = 1, f(-1)=-1, \int_{-1}^{1}(bx^2+cx+d)\, dx=1 \]
を全て満たしているとする.このような$f(x)$の中で定積分
\[ I = \int_{-1}^{\frac{1}{2}} \{f^{\ \prime\prime}(x) \}^2\, dx \]
を最小にするものを求め,そのときの$I$の値を求めよ.ただし,$f^{\prime\prime}(x)$は$f^\prime(x)$の導関数を表す.
秋田大学 国立 秋田大学 2011年 第3問
点$\mathrm{O}$を中心とし,半径が$r$である円に内接する$\triangle \mathrm{ABC}$について,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$に内分する点を$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$r$と内積$\overrightarrow{a}\cdot \overrightarrow{b}$を用いて$|\overrightarrow{\mathrm{OA^\prime}}|^2$を表せ.
(2)$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る円の中心が点$\mathrm{O}$と一致するとき,$\triangle \mathrm{ABC}$が正三角形であることを示せ.
北海道大学 国立 北海道大学 2011年 第3問
次の問いに答えよ.

(1)$xy$平面上の3点O$(0,\ 0)$,A$(2,\ 1)$,B$(1,\ 2)$を通る円の方程式を求めよ.
(2)$t$が実数全体を動くとき,$xyz$空間内の点$(t +2,\ t +2,\ t)$がつくる直線を$\ell$とする.3点O$(0,\ 0,\ 0)$,A$^\prime (2,\ 1,\ 0)$,B$^\prime (1,\ 2,\ 0)$を通り,中心をC$(a,\ b,\ c)$とする球面$S$が直線$\ell$と共有点をもつとき,$a,\ b,\ c$の満たす条件を求めよ.
東京大学 国立 東京大学 2011年 第3問
$L$を正定数とする.座標平面の$x$軸上の正の部分にある点P$(t,\ 0)$に対し,原点Oを中心とし点Pを通る円周上を,Pから出発して反時計回りに道のり$L$だけ進んだ点をQ$(u(t),\ v(t))$と表す.

(1)$u(t),\ v(t)$を求めよ.
(2)$0<a<1$の範囲の実数$a$に対し,積分
\[ f(a) = \int_a^1 \sqrt{\{u^{\, \prime}(t)\}^2 + \{v^{\, \prime}(t)\}^2 } \, dt \]
を求めよ.
(3)極限$\displaystyle \lim_{a \to +0}\frac{f(a)}{\log a}$を求めよ.
北海道大学 国立 北海道大学 2011年 第5問
$0<a<2\pi$とする.$0<x<2\pi$に対して
\[ F(x)=\int_x^{x+a} \sqrt{1- \cos \theta} \, d\theta \]
と定める.

(1)$F^\prime (x)$を求めよ.
(2)$F^\prime (x) \leqq 0$となる$x$の範囲を求めよ.
(3)$F(x)$の極大値および極小値を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$f(x) = e^{-x^2}$とする.曲線$y = f(x)$上の点A$(a,\ f(a))$における接線を$\ell$,原点$\mathrm{O}$を通り$\ell$に垂直な直線を$\ell^\prime$とし,$\ell$と$\ell^\prime$との交点を$\mathrm{P}$とする.

(1)線分$\mathrm{OP}$の長さを求めよ.
(2)$\ell$と$y$軸との交点を$\mathrm{Q}$とし,$\angle \mathrm{POQ}$を$\theta \ (0 \leqq \theta \leqq \pi)$とする.$\sin \theta$を$a$を用いて表せ.
(3)$(2)$で求めた$\sin \theta$を最大にする$a$の値と,そのときの$\sin \theta$の値を求めよ.
広島大学 国立 広島大学 2011年 第1問
実数 $a,\ b$に対して,$2$次正方行列$A$と列ベクトル$B$を
\[ A=\left( \begin{array}{cc}
a & 2-a \\
1+a & 2
\end{array} \right),\quad B=\left( \begin{array}{c}
2b \\
b
\end{array} \right) \]
と定め,$E =\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.等式
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+B \]
により,座標平面上の点P$(x,\ y)$に対し点P$^\prime (x^\prime,\ y^\prime)$が定まるものとする.次の問いに答えよ.

(1)$a = b = -1$のとき,点P$^\prime (3,\ 2)$となる点P$(x,\ y)$を求めよ.
(2)$A^2 = kE \ (k \text{は実数})$を満たすとき,$a,\ k$の値を求めよ.
(3)どんな点Pに対しても点P$^\prime$が原点Oに一致しないための$a,\ b$の条件を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a,\ b,\ c$を定数とし,$a>0$とする.3次関数$f(x)=ax^3+bx^2+cx+1$の導関数を$f^{\, \prime}(x)$とする.相異なる実数$p,\ q$で定まる3つの数
\[ A=\frac{f^{\, \prime}(p)+f^{\, \prime}(q)}{2},\quad B=f^{\, \prime}\biggl(\frac{p+q}{2} \biggr),\quad C=\frac{f(p)-f(q)}{p-q} \]
について,次の問いに答えよ.

(1)$A$を$a,\ b,\ c,\ p,\ q$を用いて表せ.
(2)$A,\ B,\ C$の大小関係を調べよ.
香川大学 国立 香川大学 2011年 第4問
$a,\ b,\ c$を定数とし,$a>0$とする.3次関数$f(x)=ax^3+bx^2+cx+1$の導関数を$f^{\, \prime}(x)$とする.相異なる実数$p,\ q$で定まる3つの数
\[ A=\frac{f^{\, \prime}(p)+f^{\, \prime}(q)}{2},\quad B=f^{\, \prime}\biggl(\frac{p+q}{2} \biggr),\quad C=\frac{f(p)-f(q)}{p-q} \]
について,次の問いに答えよ.

(1)$A$を$a,\ b,\ c,\ p,\ q$を用いて表せ.
(2)$A,\ B,\ C$の大小関係を調べよ.
香川大学 国立 香川大学 2011年 第2問
$A=\displaystyle \frac{1}{4} \left( \begin{array}{cc}
5 & 3 \\
3 & 5
\end{array} \right)$とする.点P$_n(x_n,\ y_n) \ (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.
\begin{eqnarray}
& & \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) = \left( \begin{array}{c}
1 \\
0
\end{array} \right), \nonumber \\
& & \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right) = A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right) \quad (n \geqq 2) \nonumber
\end{eqnarray}
2点F,F$^{\, \prime}$の座標をそれぞれ$(\sqrt{2},\ 0),\ (-\sqrt{2},\ 0)$とする.このとき,次の問に答えよ.

(1)P$_n$とFの距離P$_n$Fと,P$_n$とF$^{\, \prime}$の距離P$_n$F$^{\, \prime}$の差を求めよ.
(2)2次曲線$C$で,P$_1$,P$_2$,$\cdots$,P$_n$,$\cdots$がすべて$C$上にあるような$C$の方程式を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。