タグ「導関数」の検索結果

37ページ目:全552問中361問~370問を表示)
宮城教育大学 国立 宮城教育大学 2012年 第4問
関数$f(x)=2 \sin x-x \cos x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)$の導関数を$f^\prime(x)$とするとき,$\displaystyle \frac{\pi}{2} \leqq a \leqq \pi$および$f^\prime(a)=0$を満たす$a$がただ1つ存在することを示せ.
(2)(1)の$a$を用いて,関数$y=f(x)$の増減,グラフの凹凸および変曲点を調べ,そのグラフの概形をかけ.
(3)(1)の$a$について,$0<t<a$とするとき,
\[ S(t)=\int_0^a |f(x)-f(t)| \, dx \]
が最小となるような$t$の値を$a$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2012年 第5問
関数$f(x)$は微分可能で,導関数$f^\prime(x)$は連続であるとする.$p(x)=xe^{2x}$とおくとき,$f(x)$は
\[ \int_0^x f(t) \cos (x-t) \, dt=p(x) \]
を満たしている.このとき次の問いに答えよ.

(1)$f(0)=p^\prime(0)$を示せ.
(2)$f^\prime(x)=p(x)+p^{\prime\prime}(x)$を示せ.
(3)$f(x)$を求めよ.
防衛大学校 国立 防衛大学校 2012年 第1問
$2$つの関数$f(x)=x^2+ax+2,\ g(x)=-x^2+bx+2$が,$\displaystyle f^\prime \left( \frac{a+1}{2} \right)=g^\prime \left( \frac{a+1}{2} \right)$をみたしている.このとき,次の問に答えよ.ただし,$a,\ b$は定数で$a<-1$とする.

(1)$b$を$a$で表せ.
(2)$2$つの曲線$C_1:y=f(x)$と$C_2:y=g(x)$のすべての共有点について,その$x$座標を$a$の式で表せ.
(3)$C_1$と$C_2$が囲む部分の面積を$S$とするとき,$S$を$a$で表せ.
(4)$\displaystyle S=\frac{7}{3} |a+1|+2$となるような$a$の値を求めよ.
山梨大学 国立 山梨大学 2012年 第2問
次の問いに答えよ.

(1)多項式$f(x)$を$x-1$で割ると$3$余り,$x-2$で割ると$2$余るとき,$f(x)$を$(x-1)(x-2)$で割ったときの余りを求めよ.
(2)不等式$0<\log (x^2-4x+3)-\log (x^2-6x+8)<\log 2$を満たす$x$の範囲を求めよ.
(3)$f(x)$が等式$\displaystyle f(x)=x^2+\int_0^x f^\prime(t) e^{t-x} \, dt$を満たしているとき,$f(x)$を求めよ.
山梨大学 国立 山梨大学 2012年 第5問
実数を成分とする行列
\[ M=\left( \begin{array}{cc}
1 & b \\
b & 1-a
\end{array} \right),\quad M^\prime=\left( \begin{array}{cc}
1 & b^\prime \\
b^\prime & 1-a^\prime
\end{array} \right),\quad P=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
が$MM^\prime=M^\prime M$,$a \neq 0$,$a^\prime \neq 0$を満たし,$P^{-1}MP$が対角行列であるとする.ここで,対角行列とは$\left( \begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array} \right)$の形の行列である.

(1)$a,\ b,\ a^\prime,\ b^\prime$の間に成り立つ関係式を求めよ.
(2)$\tan 2\theta$を$a,\ b$を用いた式で表せ.
(3)$P^{-1}M^\prime P$が対角行列であることを示せ.
東京海洋大学 国立 東京海洋大学 2012年 第1問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される移動により点$(x,\ y)$が点$(x^\prime,\ y^\prime)$に移るとき
\[ x^{\prime 2}+y^{\prime 2}=x^2+y^2 \]
が常に成り立つとする.

(1)$\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$が成り立つことを示せ.

(2)行列$A^2$で表される移動が,原点に関する対称移動になるような行列$A$をすべて求めよ.
京都教育大学 国立 京都教育大学 2012年 第6問
$2$つの関数
\[ f(x)=x^3+1,\quad g(x)=f(1)+f^\prime(1)(x-1)+\frac{1}{2}f^{\prime\prime}(1)(x-1)^2 \]
について,次の問に答えよ.

(1)導関数の定義に従って$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)$0 \leqq x \leqq 1$において常に$f(x) \leqq g(x)$であることを証明せよ.
(4)$2$つの曲線$y=f(x)$,$y=g(x)$と$y$軸で囲まれる図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第4問
関数
\[ f(x) = \log(1+\sqrt{1-x^2}) - \sqrt{1-x^2} - \log x \quad (0<x<1) \]
について,つぎの問に答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.
(3)曲線$y=f(x)$上を動く点を$\mathrm{P}$とする.点$\mathrm{Q}$は,曲線$y=f(x)$の$\mathrm{P}$における接線上にあり,$\mathrm{P}$との距離が$1$で,その$x$座標が$\mathrm{P}$の$x$座標より小さいものとする.$\mathrm{Q}$の軌跡を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
半径$1$の球が平面の上に接している.平面との接点を$\mathrm{O}$とし,$\mathrm{O}$を球の南極点とみなしたときの球の北極点を$\mathrm{N}$とする.平面上に点$\mathrm{A}$を$\mathrm{OA}=3$となるようにとる.また点$\mathrm{B}$を$\mathrm{OB}=4$であり,直線$\mathrm{OA}$と直線$\mathrm{OB}$が直交するようにとる.\\
\quad 点$\mathrm{N}$と平面上の点$\mathrm{P}$を結ぶ直線が球面と交わる$2$点の内,$\mathrm{N}$と異なる点を$\mathrm{P}^{\prime}$とする.このとき$\mathrm{N}$と$\mathrm{A}^{\prime}$,$\mathrm{B}^{\prime}$の距離はそれぞれ
\[ \mathrm{NA}^{\prime}= \frac{[$1$][$2$]}{\sqrt{[$3$][$4$]}},\quad \text{NB}^{\prime}=\frac{[$5$][$6$]}{\sqrt{[$7$][$8$]}} \]
である.点$\mathrm{P}$が直線$\mathrm{AB}$上を動くとき,$\mathrm{P}^{\prime}$は直径
\[ \frac{[$9$][$10$]}{\sqrt{[$11$][$12$]}} \]
の円を動く.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
\setstretch{1.4}
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が協力して仕事を完成した場合は$120$万円の報酬をもらえる.しかし$\mathrm{A}$,$\mathrm{B}$の$2$人が協力して仕事を完成した場合は$60$万円の報酬に,$\mathrm{A}$,$\mathrm{C}$の$2$人が協力して仕事を完成した場合は$20$万円の報酬に減額される.さらに$\mathrm{B}$,$\mathrm{C}$の$2$人が協力して仕事を完成した場合や各人が単独で仕事を完成した場合は報酬はもらえない.\\
\quad 実際は$3$人が協力して仕事を完成し,$120$万円の報酬を得たが,この報酬を$3$者間でいかに配分したらよいかを考えた.\\
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$各人の配分額をそれぞれ$x,\ y,\ z$とすれば
\[ x+y+z=120,\quad x\geq 0,\quad y \geq 0,\quad z \geq 0 \]
である.たとえば$(x,\ y,\ z)=(40,\ 10,\ 70)$としてみる.もし$\mathrm{A}$,$\mathrm{B}$の$2$人が仕事を完成したとすれば$60$万円の報酬であるが,この配分では$\mathrm{A}$,$\mathrm{B}$は$50$万円の報酬を得る.したがって$\mathrm{A}$,$\mathrm{B}$にとっては$60-50=10$(万円)の不満である.そして$\mathrm{A}$,$\mathrm{C}$にとっては$20-110=-90$の不満である.$\mathrm{B}$,$\mathrm{C}$にとっては$-[$13$][$14$]$の不満,$\mathrm{A}$にとっては$-[$15$][$16$]$の不満,$\mathrm{B}$にとっては$-[$17$][$18$]$の不満,$\mathrm{C}$にとっては$-[$19$][$20$]$の不満である.この場合,$2$人あるいは単独で仕事を完成した場合と比較すると最大の不満は$10$,$2$番目に大きな不満は$-[$21$][$22$]$,$3$番目に大きな不満は$-[$23$][$24$]$である.\\
\quad さて配分$(x,\ y,\ z)$を考える方針として,各配分に対して,$2$人あるいは単独で仕事を完成した場合と比較して上述のように不満を計算する.そして最大の不満がより小さい配分が好ましいとする.ただし最大の不満が同じ場合は$2$番目に大きな不満,それが同じであれば$3$番目の不満といった具合に比較する.\\
\quad もっとも好ましい配分に対する最大の不満を$M$とすると,$M=-[$25$][$26$]$であることが分かる.最大の不満が$M$である配分に対して$2$番目に大きな不満を$M^{\prime}$とすると,$M^{\prime}=-[$27$][$28$]$であることが分かる.以上のことからもっとも好ましい配分は
\[ x=[$29$][$30$],\quad y=[$31$][$32$],\quad z=[$33$][$34$] \]
である.
\setstretch{1.3}
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。