タグ「導関数」の検索結果

35ページ目:全552問中341問~350問を表示)
広島大学 国立 広島大学 2012年 第1問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$の表す$1$次変換によって,$2$点$\mathrm{P}(1,\ 1)$,$\mathrm{Q}(2,\ 2)$は連立不等式$1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2$の表す領域内の点$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$にそれぞれ移されるものとする.ただし,$a,\ b,\ c,\ d$は正の実数で$a>c$を満たすとする.次の問いに答えよ.

(1)$a+b=1$および$c+d=1$が成り立つことを証明せよ.
(2)$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{R}(a,\ c)$,$\mathrm{S}(a+b,\ c+d)$,$\mathrm{T}(b,\ d)$を頂点とする平行四辺形$\mathrm{ORST}$の面積を$p$とするとき,次の式が成り立つことを証明せよ.
\[ A \biggl( \begin{array}{c}
b \\
-c
\end{array} \biggr) = p \biggl( \begin{array}{c}
b \\
-c
\end{array} \biggr) \]
(3)自然数$n$に対して,$a_n,\ b_n,\ c_n,\ d_n$を
\[ \biggl( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \biggr) = A^n \biggl( \begin{array}{cc}
1 & b \\
1 & -c
\end{array} \biggr) \]
で定める.このとき$a_n,\ b_n,\ c_n,\ d_n$を$b,\ c,\ n$および(2)の$p$を用いて表せ.
(4)$\displaystyle A^3=\frac{1}{27} \biggl( \begin{array}{cc}
14 & 13 \\
13 & 14
\end{array} \biggr)$となるように$A$を定めよ.
信州大学 国立 信州大学 2012年 第4問
実数$a$は$a>-1$とする.関数$f(x)=3x^3-7x^2+5x-1$に対し,
\[ -1<c<a,\ \frac{f(a)-f(-1)}{a+1}=f^{\, \prime}(c) \]
となる$c$がちょうど2つ存在するような$a$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$T$は原点の回りの回転移動と原点中心の拡大(相似変換)との合成変換であることを示せ.
(2)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の2倍となる$c$の値を求めよ.
(3)$c=2$とする.楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.$E$が$E^\prime$の内部にあることを示し,$E^\prime$の内部にあり$E$の外部にある部分の面積を求めよ.
千葉大学 国立 千葉大学 2012年 第9問
以下の問いに答えよ.

(1)関数$f(x)$は第2次導関数$f^{\prime\prime}(x)$が連続で,ある$a<b$に対して,$f^{\prime}(a)=f^{\prime}(b)=0$を満たしているものとする.このとき
\[ f(b)-f(a)=\int_a^b \left( \frac{a+b}{2}-x \right) f^{\prime\prime}(x) \, dx \]
が成り立つことを示せ.
(2)直線道路上における車の走行を考える.ある信号で停止していた車が,時刻0で発進後,距離$L$だけ離れた次の信号に時刻$T$で到達し再び停止した.この間にこの車の加速度の絶対値が$\displaystyle \frac{4L}{T^2}$以上である瞬間があることを示せ.
熊本大学 国立 熊本大学 2012年 第3問
2つの関数$\displaystyle f(x)=\int_0^x e^t(\sin t+\cos t)\, dt$と$\displaystyle g(x)=\int_0^x e^t(\cos t-\sin t) \, dt$について,以下の問いに答えよ.

(1)$f(x)$と$g(x)$を求めよ.
(2)$f^{(n)}(x)$と$g^{(n)}(x)$をそれぞれ$f(x)$と$g(x)$の第$n$次導関数とする.

(3)$n \geqq 2$のとき, $f^{(n)}(x)$および$g^{(n)}(x)$を,$f^{(n-1)}(x)$と$g^{(n-1)}(x)$を用いて表せ.
(4)$\{f^{(n)}(x)\}^2+\{g^{(n)}(x)\}^2$を求めよ.
(5)実数$a$について,$\displaystyle \sum_{n=1}^\infty \frac{e^{2a}}{\{f^{(n)}(a)\}^2+\{g^{(n)}(a)\}^2}$の和を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の$k$倍($k \geqq 1$)となる$c$の値を求めよ.
(2)楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.楕円$E^\prime$上のすべての点が楕円$E$の周上または外部にあるための,$c$の条件を求めよ.
弘前大学 国立 弘前大学 2012年 第3問
座標平面に点$\mathrm{E}(1,\ 0)$,$\mathrm{F}(1,\ 1)$,$\mathrm{F}^\prime(-5,\ 11)$がある.さらに点$\mathrm{E}^\prime$は第1象限にあり,$\mathrm{O}$を原点とするとき,三角形$\mathrm{OE}^\prime \mathrm{F}^\prime$は角$\mathrm{E}^\prime$が直角の二等辺三角形である.

(1)点$\mathrm{E}^\prime$の座標を求めよ.
(2)点$\mathrm{E}$を点$\mathrm{E}^\prime$に,点$\mathrm{F}$を点$\mathrm{F}^\prime$に移すような1次変換を$f$とする.$f$を表す行列を求めよ.
(3)座標平面に三角形$\mathrm{OPQ}$があり,(2)の1次変換$f$により点$\mathrm{P}$が点$\mathrm{P}^\prime$に,点$\mathrm{Q}$が点$\mathrm{Q}^\prime$に移るとする.三角形$\mathrm{OPQ}$と三角形$\mathrm{OP}^\prime \mathrm{Q}^\prime$は相似であることを示せ.
佐賀大学 国立 佐賀大学 2012年 第2問
$0$以上の整数$n$に対して,$\displaystyle f_n(x)=\frac{x^ne^{-x}}{n!}$とおく.ただし,$0!=1$とし,$e$は自然対数の底とする.次の問いに答えよ.

(1)$n \geqq 1$のとき,$f_n(x)$の導関数を$f_n(x),\ f_{n-1}(x)$を用いて表せ.
(2)$\displaystyle \sum_{k=0}^n f_k(x)$の導関数を求めよ.
(3)$\displaystyle \int_0^1 f_n(x) \, dx$を求めよ.
(4)$\displaystyle e>\sum_{k=0}^n \frac{1}{k!}$を示せ.
大分大学 国立 大分大学 2012年 第4問
$\displaystyle I_1=\int_0^3 \sqrt{x^2+9} \, dx, I_2=\int_0^3 \frac{dx}{\sqrt{x^2+9}}$とする.

(1)次の等式がすべての実数$x$について成り立つように,定数$a,\ b$の値を定めなさい.
\[ \frac{x^2}{\sqrt{x^2+9}}=a\sqrt{x^2+9}+\frac{b}{\sqrt{x^2+9}} \]
(2)$I_1$において部分積分することにより,$I_1$を$I_2$で表しなさい.
(3)$\log (x+\sqrt{x^2+9})$の導関数を利用して,$I_2$を求めなさい.
(4)曲線$x^2-y^2=-9$と直線$y=3\sqrt{2}$で囲まれた部分の面積$S$を求めなさい.
岐阜大学 国立 岐阜大学 2012年 第5問
$a$を正の実数とする.$t$を媒介変数として
\[ x(t)=\cos 2t,\ y(t)=\sin at \quad (-\pi \leqq t \leqq \pi) \]
で表される曲線$C$について,以下の問に答えよ.

(1)$a=1$とする.$C$を$x$と$y$の方程式で表し,その概形を$xy$平面上にかけ.
(2)$a=2$とする.$C$を$x$と$y$の方程式で表し,その概形を$xy$平面上にかけ.
(3)定積分
\[ \int_{-\pi}^\pi x(t)y^\prime(t) \, dt \]
の値を,$a \neq 2$と$a=2$のそれぞれの場合について求めよ.
(4)(3)で求めた定積分の値を$a$の関数と考えて$\displaystyle P(a)=\int_{-\pi}^\pi x(t)y^\prime(t) \, dt$とおく.$\displaystyle \lim_{a \to 2}P(a)$の値を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。